[1] NANEV C N. Advancements (and challenges) in the study of protein crystal nucleation and growth; thermodynamic and kinetic explanations and comparison with small-molecule crystallization[J]. Progress in Crystal Growth and Characterization of Materials, 2020, doi:10.1016/j.pcrysgrow.2020.100484 [2] 黄炎, 孙海龙, 孟子超, 等. 溶析结晶在医药领域的研究进展[J]. 化工进展, 2019, 38(5):2380-2388 HUANG Yan, SUN Hailong, MENG Zichao, et al. Progress in antisolvent crystallization in pharmaceutical field[J]. Chemical Industry and Engineering Progress, 2019, 38(5):2380-2388(in Chinese) [3] LINDENMEYER P H. Surface area and secondary nucleation theory[J]. Nature, 1977, 269(5627):396-397 [4] NAGALINGAM S, VASUDEVAN S, RAMASAMY P, et al. Studies on two-dimensional nucleation[J]. Journal of Crystal Growth, 1982, 57(2):387-390 [5] TAI C, WU J, ROUSSEAU R W. Interfacial supersaturation, secondary nucleation, and crystal growth[J]. Journal of Crystal Growth, 1992, 116(3/4):294-306 [6] CADORET R, HOTTIER F. Mechanism of Si polycrystalline growth on a Si3N4 substrate from SiH4/H2 at reduced pressures[J]. Journal of Crystal Growth, 1983, 64(3):583-592 [7] 胡程耀, 黄培. 固体溶解度测定方法的近期研究进展[J]. 药物分析杂志,2010, 30(4):761-766 HU Chengyao, HUANG Pei. Recent research progress in solid solubility determination methods[J]. Journal of Pharmaceutical Analysis, 2010, 30(4):761-766 (in Chinese) [8] 张婵, 程文婷, 成怀刚, 等. AlCl3·6H2O在FeCl3-CaCl2-HCl-H2O体系中溶解度的模拟和测定[J]. 无机盐工业, 2019, 51(5):61-65 ZHANG Chan, CHENG Wenting, CHENG Huaigang, et al. Simulation and determination of AlCl3·6H2O solubility in FeCl3-CaCl2-HCl-H2O system[J]. Inorganic Chemicals Industry, 2019, 51(5):61-65(in Chinese) [9] LI D, MENG L, DENG T, et al. Experimental and thermodynamic modeling study of solid-liquid equilibrium in ternary systems NaBr-SrBr2-H2O and KBr-SrBr2-H2O at 288.15 K and 0.1 MPa[J]. Journal of Molecular Liquids, 2018, 252:362-367 [10] 王海蓉, 张春桃, 梁文懂. 赤藓糖醇在水中的结晶热力学及结晶过程研究[J]. 化学工业与工程, 2018, 35(3):50-54 WANG Hairong, ZHANG Chuntao, LIANG Wendong. Crystallization thermodynamics and its crystallization process of meso-erythritol in water[J]. Chemical Industry and Engineering, 2018, 35(3):50-54(in Chinese) [11] 张妍. 七水硫酸亚铁综合利用绿色新工艺及相关基础研究[D]. 北京:中国科学院大学(中国科学院过程工程研究所), 2017 ZHANG Yan. New green process for comprehensive utilization of ferrous sulfate and relevant fundamental investigation[D]. Beijing:Institute of Process Engineering, Chinese Academy of Sciences, 2017 (in Chinese) [12] LONG B, XIA Y, DENG Z, et al. Understanding the enhanced solubility of 1, 3-benzenedicarboxylic acid in polar binary solvents of (acetone+water) at various temperatures[J]. The Journal of Chemical Thermodynamics, 2017, 105:105-111 [13] CRESTANI C E, BERNARDO A, COSTA C B B. Fructose solubility in mixed (ethanol+water) solvent:Experimental data and comparison among different thermodynamic models[J]. Journal of Chemical and Engineering Data:the ACS Journal for Data, 2013, 58(11):3039-3045 [14] 梁玺, 赵改菊, 路春美, 等. 葡萄糖酸钙结晶的热力学特性[J]. 化学工程, 2021, 49(3):22-27 LIANG Xi, ZHAO Gaiju, LU Chunmei, et al. Thermodynamic properties of calcium gluconate crystallization[J]. Chemical Engineering (China), 2021, 49(3):22-27(in Chinese) [15] 刘珏欣, 郑承刚, 叶世超. 磷酸二氢钾结晶热力学数据的测定及应用研究[J]. 无机盐工业, 2021, 53(1):62-64 LIU Juexin, ZHENG Chenggang, YE Shichao. Determination and application of thermodynamic data of potassium dihydrogen phosphate crystal[J]. Inorganic Chemicals Industry, 2021, 53(1):62-64(in Chinese) [16] 房彬彬, 侯宝红, 黄欣, 等. 二苯甲酮结晶热力学性质及其模型研究[J]. 化学工业与工程, 2019, 36(6):1-8 FANG Binbin, HOU Baohong, HUANG Xin, et al. Research on thermodynamic properties and model of benzophenone[J]. Chemical Industry and Engineering, 2019, 36(6):1-8(in Chinese) [17] JOLLIFFE H G, DIAB S, GEROGIORGIS D I. Nonlinear optimization via explicit NRTL model solubility prediction for antisolvent mixture selection in artemisinin crystallization[J]. Organic Process Research & Development, 2018, 22(1):40-53 [18] LI C, JI X, LI J, et al. Measurement and correlation of the solubility of kojic acid in pure and binary solvents[J]. The Journal of Chemical Thermodynamics, 2022, doi:10.1016/j.jct.2021.106712 [19] 彭小奇, 宋国辉, 宋彦坡, 等. NaOH-NaAl(OH)4-Na2CO3-H2O体系活度因子的计算模型[J]. 中国有色金属学报, 2009, 19(7):1332-1337 PENG Xiaoqi, SONG Guohui, SONG Yanpo, et al. Calculation model of activity coefficient for NaOH-NaAl(OH)4-Na2CO3-H2O system[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(7):1332-1337(in Chinese) [20] GAO W, LI Z. Solubility and K-Sp of Mg4Al2(OH)14 center dot 3H2O at the various ionic strengths[J]. Hydrometallurgy, 2012, 117:36-46 [21] PABLO L, TURNER D R, ACHTERBERG E P, et al. Solid-liquid equilibria in aqueous solutions of tris, tris-NaCI, tris-TrisHCl, and tris-(TrisH)(2)SO4 at temperatures from 5 to 45℃[J]. Journal of Chemical and Engineering Data, 2021, 66(1):437-455 [22] KHORSANDI M, SHEKAARI H, MOKHTARPOUR M, et al. Cytotoxicity of some choline-based deep eutectic solvents and their effect on solubility of coumarin drug[J]. European Journal of Pharmaceutical Sciences, 2021, doi:10.1016/j.ejps.2021.106022 [23] 张妍, ZENG Yan, 李志宝, 等. 电解质溶液化学模型理论最新进展及应用举例[J]. 沈阳化工大学学报, 2017, 31(1):1-8 ZHANG Yan, ZENG Yan, LI Zhibao, et al. Speciation-based chemical modeling of electrolyte solution and its application[J]. Journal of Shenyang University of Chemical Technology, 2017, 31(1):1-8(in Chinese) [24] WANG P, ANDERKO A, YOUNG R D. A speciation-based model for mixed-solvent electrolyte systems[J]. Fluid Phase Equilibria, 2002, 203(1/2):141-176 [25] ZHANG X, ZENG Y, LI Z. Accelerated phase transition and synthesis of magnesite from hydromagnesite in aqueous mono-ethylene glycol solution[J]. Journal of Crystal Growth, 2021, doi:10.1016/j.jcrysgro.2021.126105 [26] ZHOU X, ZHENG W, XU D, et al. Solubility measurement and thermodynamics modelling for potassium dihydrogen phosphate in a water-ethanol system from 293.2 to 323.2 K[J]. Fluid Phase Equilibria, 2020, doi:10.1016/j.fluid.2020.112533 [27] KESHAVARZI F, JAVANMARDI J, NASRIFAR K, et al. Determination of clathrate hydrates dissociation conditions in aqueous solutions of methanol and salt using the e-NRTL based model[J]. Fluid Phase Equilibria, 2021, doi:10.1016/j.fluid.2021.113121 [28] ZHANG H, CHENG Z, TANG X, et al. Determination and correlation of solubility of potassium dihydrogen phosphate in acetonitrile-water solvent[J]. Inorganic Chemicals Industry, 2022,54(1):83-85 [29] SALIMI A, ROOSTA A. Experimental solubility and thermodynamic aspects of methylene blue in different solvents[J]. Thermochimica Acta, 2019, 675:134-139 [30] CHEN X, XU J, GU J, et al. Measurement and correlation of the solubility of gestodene in 11 pure and binary mixed solvent systems at temperatures from 283.15 to 323.15 K[J]. Journal of Chemical and Engineering Data, 2021, 66(10):3776-3787 [31] NARJES M S, MOHAMMAD B J, FLEMING M, et al. Solubility of lamotrigine in acetonitrile+water mixtures at various temperatures[J]. Physics and Chemistry of Liquids, 2020, 58(6):769-781 [32] SEYF J Y, SHOJAEIAN A. Vapor-liquid (azeotropic systems) and liquid-liquid equilibrium calculations using UNIFAC and NRTL-SAC activity coefficient models[J]. Fluid Phase Equilibria, 2019, 494:33-44 [33] 宋静, 齐涛, 曲景奎. OLI相平衡模拟软件及其在铬盐清洁新工艺中的应用[C]//2012年全国冶金物理化学学术会议专辑(上册). 昆明, 2012 [34] 刘昶江, 马鸿文, 张盼. 富钾正长岩水热分解生成沸石反应热力学[J]. 物理化学学报, 2018, 34(2):168-176 LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the hydrothermal decomposition reaction of potassic syenite with zeolite formation[J]. Acta Physico-Chimica Sinica, 2018, 34(2):168-176(in Chinese) [35] 尚志标, 黄小凤, 马丽萍, 等. 复合晶核剂对黄磷炉渣微晶玻璃析晶的影响[J]. 人工晶体学报, 2017, 46(8):1643-1648, 1652 SHANG Zhibiao, HUANG Xiaofeng, MA Liping, et al. Effect of composite nucleation agents on crystallization of glass-ceramics produced by yellow phosphorus furnace slag[J]. Journal of Synthetic Crystals, 2017, 46(8):1643-1648, 1652(in Chinese) [36] SCHWITALLA D H, BRONSCH A M, KLINGER M, et al. Analysis of solid phase formation and its impact on slag rheology[J]. Fuel, 2017, 203:932-941 [37] DENG J, CHENG L, ZHENG G, et al. Thermodynamic study on co-deposition of ZrB2-SiC from ZrCl4-BCl3-CH3SiCl3-H2-Ar system[J]. Thin Solid Films, 2012, 520(23):7030-7034 [38] WANG D, LI Z. Kinetic analysis for crystal growth rate of NH4Cl in the NaCl-MgCl2-H2O system with a thermodynamic approach[J]. AIChE Journal, 2012, 58:914-924 [39] CONSTANCE E N, MOHAMMED M, MOJIBOLA A, et al. Effect of additives on the crystal morphology of amino acids:A theoretical and experimental study[J]. Journal f Physical Chemistry, 2016, 120(27):14749-14757 [40] 高毅颖, 张懿, 王静康, 等. 不同类型媒晶剂对硫酸铵晶体形态学指标的影响[J]. 化工学报, 2011, 62(12):3575-3579 GAO Yiying, ZHANG Yi, WANG Jingkang, et al. Effect of crystallization additives on crystal morphology of ammonium sulfate[J]. CIESC Journal, 2011, 62(12):3575-3579(in Chinese) [41] 吴剑铭, 王小蕾, 汤琦, 等. 反式聚异戊二烯结晶性能与分子模拟的研究进展[J]. 高分子材料科学与工程, 2019, 35(7):167-174 WU Jianming, WANG Xiaolei, TANG Qi, et al. Progress in crystallization properties and molecular simulations of trans-1, 4-polyisoprene[J]. Polymer Materials Science & Engineering, 2019, 35(7):167-174(in Chinese) [42] LOURENÇO C, MELO C I, BOGEL-ŁUKASIK R, et al. Solubility advantage of pyrazine-2-carboxamide:Application of alternative solvents on the way to the future pharmaceutical development[J]. Journal of Chemical & Engineering Data, 2012, 57:1525-1533 [43] PETITPREZ J, LEGRAND F X, TAMS C, et al. Huge solubility increase of poorly water-soluble pharmaceuticals by sulfobutylether-β-cyclodextrin complexation in a low-melting mixture[J]. Environmental Chemistry Letters, 2022, 20(3):1561-1568 [44] KAMGAR A, MOHSENPOUR S, ESMAEILZADEH F. Solubility prediction of CO2, CH4, H2, CO and N2 in choline chloride/urea as a eutectic solvent using NRTL and COSMO-RS models[J]. Journal of Molecular Liquids, 2017, 247:70-74 [45] LINNIKOV O D. Mechanism of precipitate formation during spontaneous crystallization from supersaturated aqueous solutions[J]. Russian Chemical Reviews, 2014, 83(4):343-364 [46] MULLIN J W. Crystallization[M].The United Kingdom:Reed educational and professional publishing ltd, 2001 [47] MERSMANN A, LÖFFELMANN M. Crystallization and precipitation:The optimal supersaturation[J]. Chemie Ingenieur Technik, 1999, 71:1240-1244 [48] BECKMANN W. Seeding the desired polymorph:Background, possibilities, limitations, and case studies[J]. Organic Process Research & Development, 2000, 4(5):372-383 [49] WANG H, DU B, WANG M. Study of the solubility, supersolubility and metastable zone width of Li2CO3in the LiCl-NaCl-KCl-Na2SO4 System from 293.15 to 353.15K[J]. Journal of Chemical & Engineering Data, 2018, 63(5):1429-1434 [50] 王盼盼, 余培斌, 吴麒峰, 等. 冷冻共晶法结晶谷氨酸钠介稳区测定[J]. 化学工程, 2017, 45(10):33-36, 40 WANG Panpan, YU Peibin, WU Qifeng, et al. Determination of freezing eutectic crystalization metastable zone of monosodium glutamate[J]. Chemical Engineering (China), 2017, 45(10):33-36, 40(in Chinese) [51] O'GRADY D, BARRETT M, CASEY E, et al. The effect of mixing on the metastable zone width and nucleation kinetics in the anti-solvent crystallization of benzoic acid[J]. Chemical Engineering Research and Design, 2007, 85(7):945-952 [52] LIU X, ZHANG Z, ZHANG L, et al. Thermodynamic study on evaporation crystallization of high saline wastewater from lead-acid batteries[J]. Journal of Crystal Growth, 2021, doi:10.1016/j.jcrysgro.2021.126166 [53] SAHIN O, DOLAS H, DEMIR H. Determination of nucleation kinetics of potassium tetraborate tetrahydrate[J]. Crystal Research and Technology, 2007, 42(8):766-772 [54] LIANG X, ZHAO G, LU C, et al. Thermodynamic properties of calcium gluconate crystallization[J]. Chemical Engineering (China), 2021, 49(3):22-27 [55] WANG S, FENG M, DU H, et al. Determination of metastable zone width, induction time and primary nucleation kinetics for cooling crystallization of sodium orthovanadate from NaOH solution[J]. Journal of Crystal Growth, 2020, doi:10.1016/j.jcrysgro.2020.125721 [56] 沈金玉, 梅文斌, 曹竹安. 丙烯酰胺的结晶热力学[J]. 精细化工, 2002, 19(4):244-247 SHEN Jinyu, MEI Wenbin, CAO Zhuan. Crystallization thermodynamics of acrylamide[J]. Fine Chemicals, 2002, 19(4):244-247(in Chinese) [57] MILOSLAV K, JAROSLAV N. Effect of impurities on the width of the metastable region of potassium sulfate[J]. Collection of Czechoslovak Chemical Communications, 1993, 58(9):1997-2002 [58] 姜东波, 曾英, 于旭东. 三元体系NaCl+NH4Cl+H2O 323.15K介稳相关系研究[J]. 应用化工, 2013, 42(4):599-601 JIANG Dongbo, ZENG Ying, YU Xudong. Metastable phase equilibrium in the ternary system NaCl+NH4Cl+H2O at 323.15 K[J]. Applied Chemical Industry, 2013, 42(4):599-601(in Chinese) [59] 何兴学, 孙勤, 杨阿三, 等. 醋酸钠介稳区的测定[J]. 化学工程, 2012, 40(7):43-45 HE Xingxue, SUN Qin, YANG Asan, et al. Determination of metastable region for sodium acetate[J]. Chemical Engineering (China), 2012, 40(7):43-45(in Chinese) [60] CHEN Q, WANG J, BAO Y. Determination of the crystallization thermodynamics and kinetics of L[J]. Fluid Phase Equilibria, 2012, 313:182-189 [61] ZHANG L, WANG B, TANG J, et al. Determination of the metastable zone and induction period of urea phosphate solution[J]. International Journal of Chemical Reactor Engineering, 2019, doi:10.1515/ijcre-2018-0174 [62] DALVI S V, YADAV M D. Effect of ultrasound and stabilizers on nucleation kinetics of curcumin during liquid antisolvent precipitation[J]. Ultrasonics Sonochemistry, 2015, 24:114-122 [63] LIU Y, WANG Y, LIU Y, et al. Solubility of L-histidine in different aqueous binary solvent mixtures from 283.15 K to 318.15 K with experimental measurement and thermodynamic modelling[J]. The Journal of Chemical Thermodynamics, 2017, 105:1-14 [64] XU S, WANG J, ZHANG K, et al. Nucleation behavior of eszopiclone-butyl acetate solutions from metastable zone widths[J]. Chemical Engineering Science, 2016, 155:248-257 [65] Kubota N. A new interpretation of metastable zone widths measured for unseeded solutions[J]. Journal of Crystal Growth. 2008,310(3):629-634 [66] SANGWAL K. A novel self-consistent Nvlt-like equation for metastable zone width determined by the polythermal method[J]. Crystal Research & Technology, 2010,44(4):231-247 [67] LI X, YIN Q, ZHANG M, et al. Process design for antisolvent crystallization of erythromycin ethylsuccinate in oiling-out system[J]. Industrial & Engineering Chemistry Research, 2016, 55(27):7484-7492 [68] 曹大群, 金艳, 陈杭, 等. 338.15 K时四元体系CaCl2-SrCl2-BaCl2-H2O相平衡测定及溶解度计算[J]. 化工学报, 2021, 72(10):5028-5039 CAO Daqun, JIN Yan, CHEN Hang, et al. Phase equilibria determination and solubility calculation of the quaternary system CaCl2-SrCl2-BaCl2-H2O at 338.15 K[J]. CIESC Journal, 2021, 72(10):5028-5039(in Chinese) [69] 张国俊, 保英莲, 刘鲤君, 等. LiCl-MgCl2-H2O三元水盐体系在313.15K相平衡研究[J]. 广州化工, 2021, 49(14):52-54 ZHANG Guojun, BAO Yinglian, LIU Lijun, et al. Phase equilibrium of LiCl-MgCl2-H2O ternary water salt system at 313.15 K[J]. Guangzhou Chemical Industry, 2021, 49(14):52-54(in Chinese) [70] CASCELLA F, SEIDEL-MORGENSTERN A, LORENZ H. Exploiting ternary solubility phase diagrams for resolution of enantiomers:An instructive example[J]. Chemical Engineering & Technology, 2020, 43(2):329-336 [71] 张亚琪, 黄燕婷, 高缘, 等. 黄芩素-烟酰胺共晶结晶过程的热力学研究[J]. 中国药科大学学报, 2015, 46(5):568-574 ZHANG Yaqi, HUANG Yanting, GAO Yuan, et al. Thermodynamics of baicalein-nicotinamide co-crystallization process[J]. Journal of China Pharmaceutical University, 2015, 46(5):568-574(in Chinese) [72] ZHANG X, YAN S, ZHOU S, et al. Solid liquid phase equilibria in the ternary systems ZnSO4-CuSO4-H2O and ZnSO4-ZnCl2-H2O at 323 K and 0.1 MPa[J]. Journal of Chemical and Engineering Data, 2020, 65(6):2957-2963 [73] 王肖丽, 朱静, 吴强, et al. NH4+,K+//H2PO-4-CO(NH2)2-H2O四元体系298.15 K相平衡研究[J].化学工程, 2021, 49(8):39-44 WANG Xiaoli, ZHU Jing, WU Qiang, et al. NH4+, K+//H2PO-4-CO(NH2)2-H2O quaternary system 298.15 K phase equilibrium study[J]. chemical engineering, 2021, 49(8):39-44 (in Chinese) [74] 韦健, 朱亮, 沙作良, 等. 覆盆子酮油析结晶过程研究[J]. 化学工业与工程, 2022, 39(1):66-74 WEI Jian, ZHU Liang, SHA Zuoliang, et al. Investigation on the oiling out crystallization of raspberry ketone[J]. Chemical Industry and Engineering, 2022, 39(1):66-74(in Chinese) [75] 冯珊. 扎布耶盐湖含锂五元体系273 K介稳相图研究及老卤蒸发实验[D]. 成都:成都理工大学, 2015 FENG Shan. Metastable phase equilibria for quinary system contained with lithium and isothermal evaporation of the zabuye old brine[D]. Chengdu:Chengdu University of Technology, 2015 (in Chinese) [76] MO Y, DANG L, WEI H. Solubility of α-form and β-form of L-glutamic acid in different aqueous solvent mixtures[J]. Fluid Phase Equilibria, 2011, 300(1/2):105-109 [77] VON MUHLEN C, LANCAS F M. Unified chromatography[J]. Quimica Nova, 2004, 27(5):747-753 [78] VEVELSTAD S J, GRIMSTVEDT A, ELNAN J, et al. Oxidative degradation of 2-ethanolamine:The effect of oxygen concentration and temperature on product formation[J]. International Journal of Greenhouse Gas Control, 2013, 18:88-100 [79] VAN TRICHT E, DE RAADT P, VERWILLIGEN A, et al. Fast, selective and quantitative protein profiling of adenovirus-vector based vaccines by ultra-performance liquid chromatography[J]. Journal of Chromatography A, 2018, 1581/1582:25-32 [80] REDEUIL K, VULCANO J, PRENCIPE F P, et al. First quantification of nicotinamide riboside with B3 vitamers and coenzymes secreted in human milk by liquid chromatography-tandem-mass spectrometry[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2019, 1110/1111:74-80 [81] 雷红, 李淑妮, 翟全国, 等. 298.15和308.15 K时1, 2-丙二醇+MCl(M=Na, K, Rb, Cs)+H2O三元体系的溶解度、密度和折光率[J]. 物理化学学报, 2012, 28(7):1599-1607 LEI Hong, LI Shuni, ZHAI Quanguo, et al. Solubility, density and refractive index for the ternary systems of 1, 2-propanediol, MCl (M=Na, K, Rb, Cs) and H2O at 298.15 and 308.15 K[J]. Acta Physico-Chimica Sinica, 2012, 28(7):1599-1607(in Chinese) [82] KRISHAN L. Densities, viscosities, and refractive indices of binary liquid mixtures of hexane, decane, hexadecane, and squalane with benzene at 298.15 K[J]. Journal of Chemical and Engineering Data:the ACS Journal for Data, 2000, 45(5):961-964 [83] MONNIER O, FEVOTTE G, HOFF C, et al. Model identification of batch cooling crystallizations through calorimetry and image analysis[J]. Chemical Engineering Science, 1997, 52(7):1125-1139 [84] RAJEEV M, HEIKE L, MYERSON A S. Solubility measurement using differential scanning calorimetry[J]. Industrial & Engineering Chemistry Research, 2002, 41(19):4854-4862 [85] XU S, LI X. Simulation and on-line real-time measurement of aspirin crystalline particle size distribution based on ultrasound[J]. Advances in Intelligent Systems Research, 2017, 132:57-63 [86] DU Y, FANG H, ZHANG Q, et al. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2016, 153:580-585 [87] 张冬燕, 王戎瑞. 高功率中红外激光器的进展[J]. 激光与红外, 2011, 41(5):487-491 ZHANG Dongyan, WANG Rongrui. Progress on mid-infrared lasers[J]. Laser & Infrared, 2011, 41(5):487-491(in Chinese) [88] YANG L, ZHANG Y, CHENG J, et al. Solubility and thermodynamics of polymorphic indomethacin in binary solvent mixtures[J]. Journal of Molecular Liquids, 2019, doi:10.1016/j.molliq.2019.111717 [89] HANSEN S B, BERG R W. Raman spectroscopic studies of methane gas hydrates[J]. Applied Spectroscopy Reviews, 2009, 44(2):168-179 [90] 方虹霞, 张琪, 张慧丽, 等. 腺嘌呤与富马酸共晶体的太赫兹光谱分析[J]. 物理化学学报, 2015, 31(2):221-226 FANG Hongxia, ZHANG Qi, ZHANG Huili, et al. Terahertz spectroscopic analysis of adenine and fumaric acid cocrystals[J]. Acta Physico-Chimica Sinica, 2015, 31(2):221-226(in Chinese) [91] RAVEENDRAN S, ALAM M M, KHAN M I K, et al. In situ formation, structural, mechanical and in vitro analysis of ZrO2/ZnFe2O4 composite with assorted composition ratios[J]. Materials Science & Engineering C, Materials for Biological Applications, 2020, doi:10.1016/j.msec.2019.110504 [92] YANG H, KIM J H, KIM K J. Study on the crystallization rates of beta- and epsilon-form HNIW in in-situ raman spectroscopy and FBRM[J]. Propellants Explosives Pyrotechnics, 2020, 45(3):422-430 [93] DU Y, ZHANG H, XUE J, et al. Raman and terahertz spectroscopical investigation of cocrystal formation process of piracetam and 3-hydroxybenzoic acid[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 139:488-494 [94] UWAYA G E, FAYEMI O E, SHERIF E S M, et al. Synthesis, electrochemical studies, and antimicrobial properties of Fe3O4 nanoparticles from Callistemon viminalis plant extracts[J]. Materials (Basel, Switzerland), 2020, doi:10.3390/ma13214894 [95] VARUN S, INDRAJIT K, GOUTAM B, et al. Synthesis, spectroscopic characterization, crystal structure, theoretical (DFT) studies and molecular docking analysis of biologically potent isopropyl 5-chloro-2-hydroxy-3-oxo-2, 3-dihydrobenzofuran-2-carboxylate[J]. Molecular Crystals and Liquid Crystals, 2022, 738(1):106-127 [96] CHEN G, LIU R, SONG C, et al. Preparation of hemihydrate gypsum with controllable morphology in glycerol-NaCl-water solutions with maleic acid[J]. Journal of Crystal Growth, 2021, doi:10.1016/j.jcrysgro.2021.126360 [97] QI M, YI T, MO Q, et al. Preparation of wheat straw nanocellulose by acid hydrolysis assisted high pressure homogenization[J]. Transaction of China Pulp and Paper, 2020, 35(3):1-8 [98] ZHIGALINA O M, KHMELENIN D N, IVANOV I M, et al. Structure of the Fe-Co nanowires obtained by template synthesis[J]. Crystallography Reports, 2021, 66(6):1109-1116 [99] TAN G, LI H, WANG Y, et al. Effect of Zener-Hollomon parameter on microstructure evolution of a HEXed PM nickel-based superalloy[J]. Journal of Alloys and Compounds, 2021, doi:10.1016/j.jallcom.2021.159889 [100] JESENOVEC J, VARLEY J, KARCHER S E, et al. Electronic and optical properties of Zn-doped β-Ga2O3 Czochralski single crystals[J]. Journal of Applied Physics, 2021, doi:10.1063/5.0050468 [101] VATS R, AHLAWAT R. Structural and optical investigations of Gd2O3:Dy3+ Nanophosphor[J]. Advances in Basic Sciences (ICABS), 2019, doi:10.1063/1.5122526 [102] PAN Q, ZHANG H, GUO X, et al. Effects of different coatings on the crystal transformation of beta-HNIW[J]. Journal of Crystal Growth, 2021, doi:10.1016/j.jcrysgro.2021.1261752 [103] HEFFERNAN C, SOTO R, HODNETT B K, et al. Growth kinetics of curcumin form I[J]. Crystengcomm. 2020, 22(20):3505-3518 [104] FUNG P, MAH H, GOLDBERG A F G, et al. PAT-facilitated pharmaceutical crystallization development through mechanistic understanding[J]. Crystal Growth & Design, 2020, 20(12):7882-7900 [105] LUO Z, CUI Y, DONG W, et al. Morphological diversity of nitroguanidine crystals with enhanced mechanical performance and thermodynamic stability[J]. Journal of Crystal Growth, 2017, 480:132-140 [106] KUTLUAY S, ŠAHIN Ö, CEYHAN A A, et al. Design and optimization of production parameters for boric acid crystals with the crystallization process in an MSMPR crystallizer using FBRM®and PVM® technologies[J]. Journal of Crystal Growth, 2017, 467:172-180
|