[1] SOMORJAI G A. Mechanism of sublimation[J]. Science, 1968, 162(3855):755-760 [2] LESTER J E, SOMORJAI G A. The effect of dislocations on the vaporization rate of NaCl single crystals[J]. Applied Physics Letters, 1968, 12(6):216-217 [3] DAVY J G, BRANTON D. Subliming ice surfaces:Freeze-etch electron microscopy[J]. Science, 1970, 168(3936):1216-1218 [4] CHAIKEN R F, SIBBETT D J, SUTHERLAND J E, et al. Rate of sublimation of ammonium halides[J]. The Journal of Chemical Physics, 1962, 37(10):2311-2318 [5] SPINGLER H. Kinetics of the vaporization of NH4Cl[J]. Z physik Chem, 1942, B52:90-116 [6] KNACKE O, STRANSKI I N, WOLFF G. Theory of the rate of vaporization[and sublimation] [J]. Z physik Chem, 1951, 198:157-185 [7] ZHU R, WANG J, LIN M. Sublimation of ammonium salts:A mechanism revealed by a first-principles study of the NH4Cl system[J]. The Journal of Physical Chemistry C, 2007, 111(37):13831-13838 [8] SCHULTZ R D, DEKKER A O. The effect of physical adsorption on the absolute decomposition rates of crystalline ammonium chloride and cupric sulfate trihydrate[J]. The Journal of Physical Chemistry, 1956, 60(8):1095-1100 [9] ZHU R, CHEN H, LIN M. Mechanism and kinetics for ammonium dinitramide (ADN) sublimation:A first-principles study[J]. The Journal of Physical Chemistry A, 2012, 116(44):10836-10841 [10] ZHU R, CHEN H, LIN M. Mechanism and kinetics for ammonium dinitramide (ADN) sublimation:A first-principles study[J]. The Journal of Physical Chemistry A, 2012, 116(44):10836-10841 [11] BÁTHORI N B, BOMBICZ P, BOURNE S A, et al. Investigation of sublimation with and without dissociation in the chloride and nitrate salts of 4-(1-hydroxy-1, 2-diphenylethyl)pyridine[J]. New J Chem, 2010, 34(3):405-413 [12] LANGMUIR I. The evaporation of small spheres[J]. Physical Review, 1918, 12(5):368-370 [13] READEY D W, KUCZYNSKI G C. Sublimation of aluminum oxide in hydrogen[J]. Journal of the American Ceramic Society, 1966, 49(1):26-29 [14] EL C. Diffusion:Mass transfer in fluid systems[M]. 3rd ed. Cambridge:Cambridge University Press, 2009 [15] SHERWOOD T K, COOKE N E. Mass transfer at low pressures[J]. AIChE Journal, 1957, 3(1):37-42 [16] TATARENKO S, DAUDIN B, BRUN D. Sublimation mechanisms of (100) and (111) CdTe[J]. Applied Physics Letters, 1994, 65(6):734-736 [17] FORTIN-DESCHÊNES M, LEVESQUE P L, MARTEL R, et al. Dynamics and mechanisms of exfoliated black phosphorus sublimation[J]. The Journal of Physical Chemistry Letters, 2016, 7(9):1667-1674 [18] NEUREITER H, SCHINZER S, KINZEL W, et al. Simultaneous layer-by-layer and step-flow sublimation on the CdTe(001) surface derived from a diffraction analysis[J]. Physical Review B, 2000, 61(8):5408-5415 [19] KRISHNAMURTHY S, BERDING M A, SHER A, et al. Semiconductor surface sublimation energies and atom-atom interactions[J]. Physical Review Letters, 1990, 64(21):2531-2534 [20] SCHINZER S, KINZEL W. Modelling sublimation by computer simulation:Morphology-dependent effective energies[J]. Surface Science, 1998, 401(1):96-104 [21] MORGAN N T, ZHANG Y, GRANDBOIS M L, et al. Mechanism for the separation of organic semiconductors via thermal gradient sublimation[J]. Organic Electronics, 2015, 24:212-218 [22] TAIROV Y M, TSVETKOV V F, KHLEBNIKOV I I. Growth of silicon carbide crystals by vapour-liquid-solid (VLS) mechanism in the sublimation method[J]. Journal of Crystal Growth, 1973, 20(2):155-157 [23] FUJIMOTO T, TSUGE H, KATSUNO M, et al. A possible mechanism for hexagonal void movement observed during sublimation growth of SiC single crystals[J]. Materials Science Forum, 2013, 740/741/742:577-580 [24] SEGAL A S, KARPOV S Y, MAKAROV Y N, et al. On mechanisms of sublimation growth of AlN bulk crystals[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4):68-72 [25] LIU Y, ZHANG X, ZHOU L, et al. Development and structure analysis of crystal forms of apabetalone:Solvates and polymorphs[J]. Crystal Growth & Design, 2021, 21(7):3864-3873 [26] LI W, SHI P, DU S, et al. Revealing the role of anisotropic solvent interaction in crystal habit formation of nifedipine[J]. Journal of Crystal Growth, 2020, doi:10.1016/j.jcrysgro.2020.125941 [27] MUTAI T, TOMODA H, OHKAWA T, et al. Switching of polymorph-dependent ESIPT luminescence of an imidazo[1, 2-a]pyridine derivative[J]. Angewandte Chemie (International Ed in English), 2008, 47(49):9522-9524 [28] WEI R, SONG P, TONG A. Reversible thermochromism of aggregation-induced emission-active benzophenone azine based on polymorph-dependent excited-state intramolecular proton transfer fluorescence[J]. Journal of Physical Chemistry C, 2013, 117(7):3467-3474 [29] RAMYA K, SARASWATHI N T, RAJA C R. Studies on the growth and characterization of organic crystal L[J]. Optik, 2017, 130:1408-1413 [30] XIA G, SHEN S, HU X, et al. Controlling crystal structures and multiple thermo- and vapochromic behaviors of benzimidazole-based squaraine dyes by molecular design and solvent adjustment[J]. Chemistry-A European Journal, 2018, 24(50):13205-13212 [31] NANGIA A, DESIRAJU G R. Pseudopolymorphism:Occurrences of hydrogen bonding organic solvents in molecular crystals[J]. Chemical Communications, 1999(7):605-606 [32] TEDESCO C, ERRA L, IMMEDIATA I, et al. Solvent induced pseudopolymorphism in a calixarene-based porous host framework[J]. Crystal Growth & Design, 2010, 10(4):1527-1533 [33] FUJII K, SAKON A, SEKINE A, et al. Reversible color switching of an organic crystal induced by organic solvent vapors[J]. Crystal Growth & Design, 2011, 11(10):4305-4308 [34] LIU Y, YAN H, YANG J, et al. Particle design of the metastable form of clopidogrel hydrogen sulfate by building spherulitic growth operating spaces in binary solvent systems[J]. Powder Technology, 2021, 386:70-80 [35] SIRRINGHAUS H. 25th anniversary article:Organic field-effect transistors:The path beyond amorphous silicon[J]. Advanced Materials, 2014, 26(9):1319-1335 [36] BARSKY I, BERNSTEIN J. Crystal structures and characterization of the polymorphs of (2-furyl)oxoacetamide[J]. CrystEngComm, 2008, 10(6):669-674 [37] KETTNER F, HÜTER L, SCHÄFER J, et al. Selective crystallization of indigo B by a modified sublimation method and its redetermined structure[J]. Acta Crystallographica Section E, Structure Reports Online, 2011, doi:10.1107/s1600536811040220 [38] WILLIAMS P A, HUGHES C E, LIM G K, et al. Discovery of a new system exhibiting abundant polymorphism:m-Aminobenzoic acid[J]. Crystal Growth & Design, 2012, 12(6):3104-3113 [39] HARADA N, ABE Y, KARASAWA S, et al. Polymorphic equilibrium responsive thermal and mechanical stimuli in light-emitting crystals of N-methylaminonaphthyridine[J]. Organic Letters, 2012, 14(24):6282-6285 [40] ZHANG K K, FELLAH N, SHTUKENBERG A G, et al. Discovery of new polymorphs of the tuberculosis drug isoniazid[J]. CrystEngComm, 2020, 22(16):2705-2708 [41] HE T, STOLTE M, BURSCHKA C, et al. Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air[J]. Nature Communications, 2015, doi:10.1038/ncomms6954 [42] YOSHINARI T, FORBES R T, YORK P, et al. Moisture induced polymorphic transition of mannitol and its morphological transformation[J]. International Journal of Pharmaceutics, 2002, 247(1/2):69-77 [43] TRIPATHI A K, PFLAUM J. Correlation between ambipolar transport and structural phase transition in diindenoperylene single crystals[J]. Applied Physics Letters, 2006, doi:10.1063/1.2338587 [44] BRILLANTE A, BILOTTI I, DELLA VALLE R G, et al. The four polymorphic modifications of the semiconductor dibenzo-tetrathiafulvalene[J]. CrystEngComm, 2008, 10(12):1899-1909 [45] ZHANG K, CALVIN S C, LIU Y, et al. Structural origins of elastic and 2D plastic flexibility of molecular crystals investigated with two polymorphs of conformationally rigid coumarin[J]. Chemistry of Materials, 2021, 33(3):1053-1060 [46] SHEN S, XIA G, JIANG Z, et al. Temperature controlling polymorphism and polymorphic interconversion in sublimation crystallization of 5-methoxy-salicylaldhyde azine[J]. Crystal Growth & Design, 2019, 19(1):320-327 [47] YU Q, DANG L, BLACK S, et al. Crystallization of the polymorphs of succinic acid via sublimation at different temperatures in the presence or absence of water and isopropanol vapor[J]. Journal of Crystal Growth, 2012, 340(1):209-215 [48] KARPINSKA J, ERXLEBEN A, MCARDLE P. 17β-hydroxy-17α-methylandrostano[3, 2-c]pyrazole, stanozolol:The crystal structures of polymorphs 1 and 2 and 10 solvates[J]. Crystal Growth & Design, 2011, 11(7):2829-2838 [49] KARPINSKA J, ERXLEBEN A, MCARDLE P. Applications of low temperature gradient sublimation in vacuo:Rapid production of high quality crystals. The first solvent-free crystals of ethinyl estradiol[J]. Crystal Growth & Design, 2013, 13(3):1122-1130 [50] MANDAL A K, THANIGAIVELAN U, PANDEY R K, et al. Preparation of spherical particles of 1, 1-diamino-2, 2-dinitroethene (FOX-7) using a micellar nanoreactor[J]. Organic Process Research & Development, 2012, 16(11):1711-1716 [51] SHAN N, ZAWOROTKO M J. The role of cocrystals in pharmaceutical science[J]. Drug Discovery Today, 2008, 13(9/10):440-446 [52] ANDRÉ V, FERNANDES A, SANTOS P P, et al. On the track of new multicomponent gabapentin crystal forms:Synthon competition and pH stability[J]. Crystal Growth & Design, 2011, 11(6):2325-2334 [53] WANG I, LEE M J, SIM S J, et al. Anti-solvent co-crystallization of carbamazepine and saccharin[J]. International Journal of Pharmaceutics, 2013, 450(1/2):311-322 [54] DOS SANTOS J A B, JÚNIOR J V C, DE ARAÚJO BATISTA R S, et al. Preparation, physicochemical characterization and solubility evaluation of pharmaceutical cocrystals of cinnamic acid[J]. Journal of Thermal Analysis and Calorimetry, 2021, 145(2):379-390 [55] WANG L, SUN G, ZHANG K, et al. Green mechanochemical strategy for the discovery and selective preparation of polymorphs of active pharmaceutical ingredient γ-aminobutyric acid (GABA)[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(45):16781-16790 [56] KALRA A, ZHANG M T, PARKIN S, et al. Crystal packing and crystallization tendency from the melt of 2-((2-ethylphenyl)amino)nicotinic acid[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2018, 233(1):9-16 [57] ZHANG T, YU Q, LI X, et al. Preparation of 2:1 urea-succinic acid cocrystals by sublimation[J]. Journal of Crystal Growth, 2017, 469:114-118 [58] CARSTENS T, HAYNES D A, SMITH V J. Cocrystals:Solution, mechanochemistry, and sublimation[J]. Crystal Growth & Design, 2020, 20(2):1139-1149 [59] SZELL P M J, GABRIEL S A, CARON-POULIN E, et al. Cosublimation:A rapid route toward otherwise inaccessible halogen-bonded architectures[J]. Crystal Growth & Design, 2018, 18(10):6227-6238 [60] O'MALLEY C, BOUCHET C, MANYARA G, et al. Salts, binary and ternary cocrystals of pyrimethamine:Mechanosynthesis, solution crystallization, and crystallization from the gas phase[J]. Crystal Growth & Design, 2021, 21(1):314-324 [61] ROBINSON S W, HAYNES D A, RAWSON J M. Co-crystal formation with 1, 2, 3, 5-dithiadiazolyl radicals[J]. CrystEngComm, 2013, 15(47):10205-10211 [62] QIAN H, WANG Y, GENG J, et al. A rare case of a dye co-crystal showing better dyeing performance[J]. CrystEngComm, 2015, 17(10):2083-2086 [63] LOMBARD J, LE ROEX T, HAYNES D A. Competition between hydrogen and halogen bonds:The effect of solvent volume[J]. Crystal Growth & Design, 2020, 20(11):7384-7391 [64] ROBERTSON C C, WRIGHT J S, CARRINGTON E J, et al. Hydrogen bonding vs. halogen bonding:The solvent decides[J]. Chemical Science, 2017, 8(8):5392-5398 [65] LOMBARD J, HAYNES D A, LE ROEX T. Assessment of co-sublimation for the formation of multicomponent crystals[J]. Crystal Growth & Design, 2020, 20(12):7840-7849 [66] LOMBARD J, SMITH V J, LE ROEX T, et al. Crystallisation of organic salts by sublimation:Salt formation from the gas phase[J]. CrystEngComm, 2020, 22(45):7826-7831 [67] JIA S, GAO Z, TIAN N, et al. Review of melt crystallization in the pharmaceutical field, towards crystal engineering and continuous process development[J]. Chemical Engineering Research and Design, 2021, 166:268-280 [68] JIA S, JING B, GAO Z, et al. Melt crystallization of 2, 4-dinitrochlorobenzene:Purification and process parameters evaluation[J]. Separation and Purification Technology, 2021, doi:10.1016/j.seppur.2020.118140 [69] 李明, 彭毅, 蒋霖, 等. 冶金级五氧化二钒真空升华制备高纯五氧化二钒的方法:CN111994952A[P]. 2020-11-27 [70] 徐龙, 徐旋, 林波, 等. 升华法精制水杨酸的工艺研究[J]. 中国医药工业杂志, 2018, 49(11):1595-1601 XU Long, XU Xuan, LIN Bo, et al. Purification of salicylic acid by sublimation[J]. Chinese Journal of Pharmaceuticals, 2018, 49(11):1595-1601(in Chinese) [71] FEDOROV V A, GASANOV A A, POTOLOKOV N A, et al. Ultrapurification of arsenic by crystallization[J]. Inorganic Materials, 2018, 54(10):1027-1032 [72] WANG L, ZHANG G, SUN Y, et al. Preparation of ultrafine β-MoO3 from industrial grade MoO3 powder by the method of sublimation[J]. The Journal of Physical Chemistry C, 2016, 120(35):19821-19829 [73] 李清洁, 费荣杰, 丁春玉, 等. 升华提纯技术应用和发展趋势[J]. 化工时刊, 2016, 30(11):28-35 LI Qingjie, FEI Rongjie, DING Chunyu, et al. Types and antioxidative mechanism of antioxidants in petroleum base aviation lubricating oil[J]. Chemical Industry Times, 2016, 30(11):28-35(in Chinese) [74] CHEN J, CHEN F, HAN J, et al. Crystallization and purification of 4, 4'-diaminodiphenyl ether[J]. Chemical Engineering & Technology, 2020, 43(6):1072-1078 [75] GILEVA O, ARYAL P, KARKI S, et al. Investigation of the molybdenum oxide purification for the AMoRE experiment[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314(3):1695-1700 [76] GROBELNY A L, VERDU F A, GROENEMAN R H. Solvent-free synthesis and purification of a photoproduct via sublimation of a tetrahalogenated template[J]. CrystEngComm, 2017, 19(26):3562-3565 [77] GENTILI D, MANET I, LISCIO F, et al. Control of polymorphism in thiophene derivatives by sublimation-aided nanostructuring[J]. Chemical Communications (Cambridge, England), 2020, 56(11):1689-1692 [78] SOLOMOS M A, CAPACCI-DANIEL C, RUBINSON J F, et al. Polymorph selection via sublimation onto siloxane templates[J]. Crystal Growth & Design, 2018, 18(11):6965-6972 [79] O'MALLEY C, ERXLEBEN A, KELLEHAN S, et al. Unprecedented morphology control of gas phase cocrystal growth using multi zone heating and tailor made additives[J]. Chemical Communications (Cambridge, England), 2020, 56(42):5657-5660 [80] KAMALI N, O'MALLEY C, MAHON M F, et al. Use of sublimation catalysis and polycrystalline powder templates for polymorph control of gas phase crystallization[J]. Crystal Growth & Design, 2018, 18(6):3510-3516 [81] KAMALI N, ERXLEBEN A, MCARDLE P. Unexpected effects of catalytic amounts of additives on crystallization from the gas phase:Depression of the sublimation temperature and polymorph control[J]. Crystal Growth & Design, 2016, 16(5):2492-2495 [82] BUCHHOLZ H K, HYLTON R K, BRANDENBURG J G, et al. Thermochemistry of racemic and enantiopure organic crystals for predicting enantiomer separation[J]. Crystal Growth & Design, 2017, 17(9):4676-4686 [83] TARASEVYCH A V, SOROCHINSKY A E, KUKHAR V P, et al. High temperature sublimation of alpha-amino acids:A realistic prebiotic process leading to large enantiomeric excess[J]. Chemical Communications, 2015, 51(32):7054-7057 [84] SARMA B, ROY S, NANGIA A. Polymorphs of 1, 1-bis(4-hydroxyphenyl)cyclohexane and multiple Z' crystal structures by melt and sublimation crystallization[J]. Chemical Communications, 2006(47):4918-4920 [85] FEREKIDES C S, MARINSKIY D, VISWANATHAN V, et al. High efficiency CSS CdTe solar cells[J]. Thin Solid Films, 2000, 361/362:520-526 [86] SCHAFFNER J, MOTZKO M, TUESCHEN A, et al. 12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation[J]. Journal of Applied Physics, 2011, doi:10.1063/1.3639291 [87] LI X, ZHANG X, LV X, et al. Synthesis and photoluminescence of high density GeSe triangular nanoplate arrays on Si substrates[J]. Nanotechnology, 2020, doi:10.1088/1361-6528/ab8668 [88] ALBIN D S, AMARASINGHE M, REESE M O, et al. Colossal grain growth in Cd(Se, Te) thin films and their subsequent use in CdTe epitaxy by close-spaced sublimation[J]. Journal of Physics:Energy, 2021, doi:10.1088/2515-7655/abd297 [89] XUE D, LIU S, DAI C, et al. GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation[J]. Journal of the American Chemical Society, 2017, 139(2):958-965 [90] MAHMOOD W, SHAH N A. CdZnS thin films sublimated by closed space using mechanical mixing:A new approach[J]. Optical Materials, 2014, 36(8):1449-1453 [91] KOBYAKOV P S, MOORE A, RAGUSE J M, et al. Deposition and characterization of Cd1-xMgxTe thin films grown by a novel cosublimation method[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2014, doi:10.1116/1.4863314 [92] HELIN A F, VANDERWERF C A. Large-capacity laboratory vacuum sublimation apparatus[J]. Analytical Chemistry, 1949, 21(10):1284-1285 [93] BERG E W, HARTLAGE F R Jr. Fractional sublimation of various metal acetylacetonates[J]. Analytica Chimica Acta, 1965, 33:173-181 [94] 肖镔, 李彦武. 智能多温区有机材料真空升华提纯装置:CN201862286U[P]. 2011-06-15 [95] 李晓常, 刘建祥, 李小刚. 一种推车式升华提纯装置:CN203315780U[P]. 2013-12-04 [96] 李晓常, 刘建祥. 一种有机化合物升华提纯系统:CN203507592U[P]. 2014-04-02 [97] JEON H G, INOUE M, HIRAMATSU N, et al. A modified sublimation purification system using arrays of partitions[J]. Organic Electronics, 2008, 9(5):903-905 [98] JEON H G, KONDO Y, MAKI S, et al. A highly efficient sublimation purification system using baffles with orifices[J]. Organic Electronics, 2010, 11(5):794-800 [99] YE X, LIU Y, GUO Q, et al. 1D versus 2D cocrystals growth via microspacing in-air sublimation[J]. Nature Communications, 2019, doi:10.1038/s41467-019-08712-1 [100] YE X, LIU Y, HAN Q X, et al. Microspacing in-air sublimation growth of organic crystals[J]. Chemistry of Materials, 2018, 30(2):412-420 [101] GUO Q, YE X, LIN Q, et al. Microspacing in-air sublimation growth of ultrathin organic single crystals[J]. Chemistry of Materials, 2020, 32(18):7618-7629
|