[1] 丁思远. 基于多功能填充剂设计制备混合基质膜强化CO2分离的研究[D]. 新疆石河子:石河子大学, 2020 DING Siyuan. Study on strengthening CO2 separation by preparing mixed matrix membrane based on multifunctional filler design.[D]. Xinjiang Shihezi:Shihezi University, 2020(in Chinese) [2] EBADI AMOOGHIN A, MASHHADIKHAN S, SANAEEPUR H, et al. Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs):A new horizon for efficient CO2 separation[J]. Progress in Materials Science, 2019, 102:222-295 [3] LI L, WANG J, LI H, et al. Constructing multi-dimensional transport pathways by mixed-dimensional fillers in membranes for efficient CO2 separation[J]. Journal of Environmental Chemical Engineering, 2023, doi:10.1016/j.jece.2022.109178 [4] WU H, LI X, LI Y, et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties[J]. Journal of Membrane Science, 2014, 465:78-90 [5] 吕侠. 氨基功能化材料改性聚苯并咪唑膜用于CO2分离的研究[D]. 新疆石河子:石河子大学, 2022 LYU Xia. Study on the separation of CO2 by modifying polybenzimidazole membrane with amino functional materials[D]. Xinjiang Shihezi:Shihezi University, 2022(in Chinese) [6] AL-ROWAILI F, KHALED M, JAMAL A, et al. Mixed matrix membranes for H2/CO2 gas separation-A critical review[J]. Fuel, 2023, doi:10.1016/j.fuel.2022.126285 [7] PAUL D R, KEMP D R. The diffusion time lag in polymer membranes containing adsorptive fillers[J]. Journal of Polymer Science:Polymer Symposia, 1973, 41(1):79-93 [8] DUTTA R C, BHATIA S K. Structure and gas transport at the polymer-zeolite interface:Insights from molecular dynamics simulations[J]. ACS Applied Materials & Interfaces, 2018, 10(6):5992-6005 [9] MOORE T T, KOROS W J. Non-ideal effects in organic-inorganic materials for gas separation membranes[J]. Journal of Molecular Structure, 2005, 739(1/2/3):87-98 [10] VU D, KOROS W J, MILLER S J. Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results[J]. Journal of Membrane Science, 2003, 211(2):311-334 [11] WIRYOATMOJO A S, MANNAN H A, NASIR R, et al. Surface modification effect of carbon molecular sieve (CMS) on the morphology and separation performance of mixed matrix membranes[J]. Polymer Testing, 2019, doi:10.1016/j.polymertesting.2019.106152 [12] HOSSEINI S S, LI Y, CHUNG T S, et al. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles[J]. Journal of Membrane Science, 2007, 302(1/2):207-217 [13] NEMATOLLAHI M H, DEHAGHANI A H S, PIROUZFAR V, et al. Mixed matrix membranes comprising PMP polymer with dispersed alumina nanoparticle fillers to separate CO2/N2[J]. Macromolecular Research, 2016, 24(9):782-792 [14] ZHU H, YUAN J, ZHAO J, et al. Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes[J]. Separation and Purification Technology, 2019, 214:78-86 [15] ARIAZADEH M, FARASHI Z, AZIZI N, et al. Influence of functionalized SiO2 nanoparticles on the morphology and CO2/CH4 separation efficiency of Pebax-based mixed-matrix membranes[J]. Korean Journal of Chemical Engineering, 2020, 37(2):295-306 [16] SADEGHI M, TALAKESH M M, GHALEI B, et al. Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane[J]. Journal of Membrane Science, 2013, 427:21-29 [17] HASSANAJILI S, KHADEMI M, KESHAVARZ P. Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes[J]. Journal of Membrane Science, 2014, 453:369-383 [18] REZAKAZEMI M, VATANI A, MOHAMMADI T. Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes[J]. RSC Advances, 2015, 5(100):82460-82470 [19] JIA T, GU Y, LI F. Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation:A review[J]. Journal of Environmental Chemical Engineering, 2022, doi:10.1016/j.jece.2022.108300 [20] VENNA S R, CARREON M A. Metal organic framework membranes for carbon dioxide separation[J]. Chemical Engineering Science, 2015, 124:3-19 [21] VARDHAN H, VERPOORT F, HE W. State-of-the-art mixed matrix membranes (MMMs)[J]. Membranes, 2022, doi:10.3390/membranes12030294 [22] PAZANI F, AROUJALIAN A. Enhanced CO2-selective behavior of Pebax-1657:A comparative study between the influence of graphene-based fillers[J]. Polymer Testing, 2019, doi:10.1016/j.polymertesting.2019.106264 [23] KAMBLE A R, PATEL C M, MURTHY Z. Different 2D materials based polyetherimide mixed matrix membranes for CO2/N2 separation[J]. Journal of Industrial and Engineering Chemistry, 2020, 81(C):451-463 [24] QIU S, ZHU G. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties[J]. Coordination Chemistry Reviews, 2009, 253(23/24):2891-2911 [25] GOH S, LAU H, YONG W. Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation:A review on advanced materials in harsh environmental applications[J]. Small (Weinheim an Der Bergstrasse, Germany), 2022, doi:10.1002/smll.202107536 [26] CHENG Y, YING Y, JAPIP S, et al. Advanced porous materials in mixed matrix membranes[J]. Advanced Materials (Deerfield Beach, Fla), 2018, doi:10.1002/adma.201870355 [27] LIU Y, XIE W, LIANG S, et al. Polyimide/ZIFs mixed matrix membranes with tunable interfacial interaction for efficient gas separation[J]. Journal of Membrane Science, 2022, doi:10.1016/j.memsci.2021.120240 [28] IMTIAZ A, OTHMAN M H D, JILANI A, et al. ZIF-filler incorporated mixed matrix membranes (MMMs) for efficient gas separation:A review[J]. Journal of Environmental Chemical Engineering, 2022, doi:10.1016/j.jece.2022.108541 [29] EHSANI A, PAKIZEH M. Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66:414-423 [30] MESHKAT S, KALIAGUINE S, RODRIGUE D. Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation[J]. Separation and Purification Technology, 2020, doi:10.1016/j.seppur.2019.116150 [31] 谢亚芳, 金花, 李砚硕. ZIF-93/Pebax 2533混合基质膜的制备及其CO2/N2分离性能研究[J]. 膜科学与技术, 2021, 41(5):79-86, 96 XIE Y F, JIN H, LI Y S. Preparation of ZIF-93/Pebax 2533mixed matrix membrane for CO2/N2 separation[J]. Membrane Science and Technology, 2021, 41(5):79-86, 96(in Chinese) [32] GUAN W, DAI Y, DONG C, et al. Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation:A review[J]. Journal of Applied Polymer Science, 2020, doi:10.1002/app.48968 [33] GAO J, MAO H, JIN H, et al. Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation[J]. Microporous and Mesoporous Materials, 2020, doi:10.1016/j.micromeso.2020.110030 [34] 李东升, 丁锐, 那天成, 等. 改性ZIF90-Pebax混合基质膜的制备及CO2分离性能[J]. 膜科学与技术, 2021, 41(4):15-24 LI Dongsheng, DING Rui, NA Tiancheng, et al. Preparation of modified ZIF90-Pebax mixed matrix membrane and its CO2 separation performance[J]. Membrane Science and Technology, 2021, 41(4):15-24(in Chinese) [35] XIANG L, SHENG L, WANG C, et al. Amino-functionalized ZIF-7 nanocrystals:Improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation[J]. Advanced Materials (Deerfield Beach, Fla), 2017, doi:10.1002/adma.201606999 [36] DING R, ZHENG W, YANG K, et al. Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation[J]. Separation and Purification Technology, 2020, doi:10.1016/j.seppur.2019.116209 [37] PARK S, JEONG H K. In-situ linker doping as an effective means to tune zeolitic-imidazolate framework-8(ZIF-8) fillers in mixed-matrix membranes for propylene/propane separation[J]. Journal of Membrane Science, 2020, doi:10.1016/j.memsci.2019.117689 [38] WANG Z, WANG D, ZHANG S, et al. Interfacial design of mixed matrix membranes for improved gas separation performance[J]. Advanced Materials (Deerfield Beach, Fla), 2016, 28(17):3399-3405 [39] RAFIUL H M, MORIONES A, MALANKOWSKA M, et al. Study on the recycling of zeolitic imidazolate frameworks and polymer Pebax® 1657 from their mixed matrix membranes applied to CO2 capture[J]. Separation and Purification Technology, 2023, doi:10.1016/j.seppur.2022.122355 [40] LIANG C, HUANG L, LV X, et al. Mixed matrix membranes based on ZIF-8 nanoparticles/poly(4-styrene sulfonate) fillers for enhanced CO2 separation[J]. ACS Applied Nano Materials, 2023, doi:10.1021/acsanm.2c05387 [41] DONG X, LIU Q, HUANG A. Highly permselective MIL-68(Al)/Matrimid mixed matrix membranes for CO2/CH4 separation[J]. Journal of Applied Polymer Science, 2016, doi:10.1002/app.43485 [42] NASERI M, MOUSAVI S F, MOHAMMADI T, et al. Synthesis and gas transport performance of MIL-101/Matrimid mixed matrix membranes[J]. Journal of Industrial and Engineering Chemistry, 2015, 29:249-256 [43] SONG C, LI R, FAN Z, et al. CO2/N2 separation performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation[J]. Separation and Purification Technology, 2020, doi:10.1016/j.seppur.2020.116500 [44] SHAH BUDDIN M M H, AHMAD A L. A review on metal-organic frameworks as filler in mixed matrix membrane:Recent strategies to surpass upper bound for CO2 separation[J]. Journal of CO2 Utilization, 2021, doi:10.1016/J.JCOU.2021.101616 [45] SARMADI R, SALIMI M, PIROUZFAR V. The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal-organic frameworks to modify the morphology and performance of Pebax® 1657-based gas separation membranes for CO2 capture applications[J]. Environmental Science and Pollution Research, 2020, 27(32):40618-40632 [46] TAHIR Z, ASLAM M, GILANI M A, et al. SO3H functionalized UiO-66 nanocrystals in Polysulfone based mixed matrix membranes:Synthesis and application for efficient CO2 capture[J]. Separation and Purification Technology, 2019, doi:10.1016/j.seppur.2019.05.060 [47] ASHTIANI S, KHOSHNAMVAND M, BOUŠA D, et al. Surface and interface engineering in CO2-philic based UiO-66-NH2-PEI mixed matrix membranes via covalently bridging PVP for effective hydrogen purification[J]. International Journal of Hydrogen Energy, 2020, doi:10.1016/j.ijhydene.2020.11.081 [48] JADHAV T, FANG Y, LIU C, et al. Transformation between 2D and 3D covalent organic frameworks via reversible[2+2]cycloaddition[J]. Journal of the American Chemical Society, 2020, 142(19):8862-8870 [49] HUANG N, WANG P, JIANG D. Covalent organic frameworks:A materials platform for structural and functional designs[J]. Nature Reviews Materials, 2016, 1(10):1-19 [50] GUAN X, CHEN F, FANG Q, et al. Design and applications of three dimensional covalent organic frameworks[J]. Chemical Society Reviews, 2020, 49(5):1357-1384 [51] GUO J, JIANG D. Covalent organic frameworks for heterogeneous catalysis:Principle, current status, and challenges[J]. ACS Central Science, 2020, 6(6):869-879 [52] HAASE F, LOTSCH B V. Solving the COF trilemma:Towards crystalline, stable and functional covalent organic frameworks[J]. Chemical Society Reviews, 2020, 49(23):8469-8500 [53] YANG Y, GOH K, WEERACHANCHAI P, et al. 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging[J]. Journal of Membrane Science, 2019, 574:235-242 [54] SHAN M X, SEOANE B, ROZHKO E, et al. Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2016, 22(41):14467-14470 [55] LIU Y,WU H,WU S,et al. Multifunctional covalentorganic framework (COF)-based mixed matrix membranes for enhanced CO2 separation[J]. Journal of Membrane Science,2021,doi:10.1016/j.memsci.2020.118693 [56] ZHAO R,WU H,YANG L,et al. Modification of covalent organic frameworks with dual functions ionic liquids for membrane-based biogas upgrading[J]. Journal of Membrane Science,2020,doi:10.1016/j.memsci.2020.117841 [57] YAZID A F, MUKHTAR H, NASIR R, et al. Incorporating carbon nanotubes in nanocomposite mixed-matrix membranes for gas separation:A review[J]. Membranes, 2022, doi:10.3390/membranes12060589 [58] FLORES M C, GONÇALVES B, FIGUEIREDO K C S. CO2 separation by mixed matrix membranes incorporated with carbon nanotubes:A review of morphological, mechanical, thermal and transport properties[J]. Brazilian Journal of Chemical Engineering, 2021, 38:777-810 [59] YAZID A F, MUKHTAR H, NASIR R, et al. Incorporating carbon nanotubes in nanocomposite mixed-matrix membranes for gas separation:A review[J]. Membranes, 2022, doi:10.3390/membranes12060589 [60] ZHAO D, REN J, WANG Y, et al. High CO2 separation performance of Pebax® /CNTs/GTA mixed matrix membranes[J]. Journal of Membrane Science, 2017, 521:104-113 [61] CHENG Y, YING Y, ZHAI L, et al. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation[J]. Journal of Membrane Science, 2018, doi:10.1016/j.memsci.2018.11.060 [62] HOU J, LI X, GUO R, et al. Improving CO2 separation performance by incorporating MWCNTs@mSiO2 core@shell filler in mixed matrix membranes[J]. Polymer Composites, 2018, 39:4486-4495 [63] LI X, LV X, DING S, et al. Mixed matrix membranes containing composite nanosheets with three-dimensional nanopores for efficient CO2 separation[J]. International Journal of Greenhouse Gas Control, 2022, doi:10.1016/j.ijggc.2022.103658 [64] SAMARASINGHE S A S C, CHUAH C Y, YANG Y, et al. Tailoring CO2/CH4 separation properties of mixed-matrix membranes via combined use of two- and three-dimensional metal-organic frameworks[J]. Journal of Membrane Science, 2018, 557:30-37 [65] SARFRAZ M, BA-SHAMMAKH M. Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases[J]. Journal of Industrial and Engineering Chemistry, 2016, 36:154-162 [66] SARFRAZ M, BA-SHAMMAKH M. Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas[J]. Journal of Membrane Science, 2016, 514:35-43 [67] SARFRAZ M, BA-SHAMMAKH M. Pursuit of efficient CO2-capture membranes:Graphene oxide- and MOF-integrated Ultrason® membranes[J]. Polymer Bulletin, 2018, 75(11):5039-5059 [68] WANG Y, REN Y, CAO Y, et al. Engineering HOF-based mixed-matrix membranes for efficient CO2 separation[J].Nano-Micro Letters, 2023, 15(1):1-9
|