[1] NISHA U, UMAPATHY M J, SIVASAMY A. Effective degradation of 2, 4-dichlorophenoxy acetic acid endocrine disruptor using CeO2-Bi2O3 mixed metal oxide photocatalyst under visible light irradiation[J]. Journal of Materials Science:Materials in Electronics, 2021, 32(11):14791-14800
[2] 张一兵,谢丽丽.铁掺杂TiO2纳米粉光催化降解酸性刚果红[J].化学工业与工程, 2019, 36(2):28-33 ZHANG Yibing, XIE Lili. Photocatalytic degradation of acidic Congo red with Fe-doping TiO2 nano-powders[J]. Chemical Industry and Engineering, 2019, 36(2):28-33(in Chinese)
[3] CUI L, DING X, WANG Y, et al. Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light[J]. Applied Surface Science, 2017, 391:202-210
[4] GEORGIEVA J. TiO2/WO3 photoanodes with enhanced photocatalytic activity for air treatment in a polymer electrolyte cell[J]. Journal of Solid State Electrochemistry, 2012, 16(3):1111-1119
[5] BYRNE C, SUBRAMANIAN G, PILLAI S C. Recent advances in photocatalysis for environmental applications[J]. Journal of Environmental Chemical Engineering, 2018, 6(3):3531-3555
[6] XIAO T, TANG Z, YANG Y, et al.In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B:Environmental, 2018, 220:417-428
[7] LU X, ZHAI T, ZHANG X, et al. WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors[J]. Advanced Materials, 2012, 24(7):938-944
[8] LI Y, TANG Z, ZHANG J, et al. Fabrication of vertical orthorhombic/hexagonal tungsten oxide phase junction with high photocatalytic performance[J]. Applied Catalysis B:Environmental, 2017, 207:207-217
[9] WANG Q, ZHANG W, HU X, et al. Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light[J]. Journal of Water Process Engineering, 2021, doi:10.1016/j.jwpe.2021.101943
[10] HERNÁNDEZ-MORENO E J, DE LA CRUZ A M, HINOJOSA-REYES L, et al. Synthesis, characterization, and visible light-induced photocatalytic evaluation of WO3/NaNbO3 composites for the degradation of 2, 4-D herbicide[J]. Materials Today Chemistry, 2021, doi:10.1016/j.mtchem.2020.100406
[11] GU Y, YU Y, ZOU J, et al. The ultra-rapid synthesis of rGO/g-C3N4 composite via microwave heating with enhanced photocatalytic performance[J]. Materials Letters, 2018, 232:107-109
[12] WANG P, SHAN Q, LIU L, et al. Preparation, characterization and photocatalytic performance of polyoxometalate/polyaniline/titania ternary composite[J]. Journal of Coordination Chemistry, 2018, 71(3):457-467
[13] TAHIR M B, SAGIR M, ZUBAIR M, et al. WO3 nanostructures-based photocatalyst approach towards degradation of RhB dye[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(3):1107-1113
[14] CHAI C, LIU J, WANG Y, et al. Enhancement in photocatalytic performance of Ag-AgCl decorated with h-WO3 and mechanism insight[J]. Applied Physics A, 2019, 125(2):1-10
[15] KUMAR S, KUMAR A. Enhanced photocatalytic activity of rGO-CeO2 nanocomposites driven by sunlight[J]. Materials Science and Engineering:B, 2017, 223:98-108
[16] MALATHI A, MADHAVAN J, ASHOKKUMAR M, et al. A review on BiVO4 photocatalyst:Activity enhancement methods for solar photocatalytic applications[J]. Applied Catalysis A:General, 2018, 555:47-74
[17] ZHANG Z, SHAO C, LI X, et al. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity[J]. ACS Applied Materials&Interfaces, 2010, 2(10):2915-2923
[18] XIAO M, LU Y, LI Y, et al. A new type of p-type NiO/n-type ZnO nano-heterojunctions with enhanced photocatalytic activity[J]. RSC Advances, 2014, doi:10.1039/C4RA04600E
[19] 任璐,盛冷荟,张石绿,等.多孔纳米TiO2的水热法制备及其光催化性能研究[J].化学研究与应用, 2020, 32(10):1924-1929 REN Lu, SHENG Lenghui, ZHANG Shilv, et al. Hydrothermal preparation of porous nano TiO2 and its photocatalytic performance[J]. Chemical Research and Application, 2020, 32(10):1924-1929(in Chinese)
[20] ZUO G, WANG Y, TEO W, et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2T X MXene for photocatalytic H2 evolution[J]. Angewandte Chemie (International Ed in English), 2020, 59(28):11287-11292
[21] WANG M, YANG G, YOU M, et al. Effects of Ni doping contents on photocatalytic activity of B-BiVO4 synthesized through sol-gel and impregnation two-step method[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(9):2022-2030
[22] XING Y, SONG S, FENG J, et al. Microemulsion-mediated solvothermal synthesis and photoluminescent property of 3D flowerlike MnWO4 micro/nanocomposite structure[J]. Solid State Sciences, 2008, 10(10):1299-1304
[23] NANAKKAL A R, ALEXANDER L K. Graphene/BiVO4/TiO2 nanocomposite:Tuning band gap energies for superior photocatalytic activity under visible light[J]. Journal of Materials Science, 2017, 52(13):7997-8006
[24] CHEN R, FAN F, DITTRICH T, et al. Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy[J]. Chemical Society Reviews, 2018, 47(22):8238-8262
[25] LI H, ZHANG J, HUANG G, et al. Hydrothermal synthesis and enhanced photocatalytic activity of hierarchical flower-like Fe-doped BiVO4[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4):868-875
[26] JAMAL N, RADHAKRISHNAN A, RAGHAVAN R, et al. Efficient photocatalytic degradation of organic dye from aqueous solutions over zinc oxide incorporated nanocellulose under visible light irradiation[J]. Main Group Metal Chemistry, 2020, 43(1):84-91
[27] LU G, LI X, QU Z, et al. Correlations of WO3 species and structure with the catalytic performance of the selective oxidation of cyclopentene to glutaraldehyde on WO3/TiO2 catalysts[J]. Chemical Engineering Journal, 2010, 159(1/2/3):242-246
[28] LI W, WAN D, WANG G, et al. Visible light induced photocatalytic degradation of rhodamine B by magnetic bentonite[J]. Water Science and Technology, 2016, 73(10):2345-2352
|