[1] Kamat P V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion[J]. J Phys Chem C, 2007, (111): 2 834-2 860
[2] Zhang F, Zhao J, Shen T, et al. TiO2-Assisted photodegradation of dye pollutants-II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation[J]. Appl Catal B: Environ, 1998, (15): 147-156
[3] Maneerat C, Hayata Y. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests[J]. Int J Food Microbiol, 2006, (107): 99-103
[4] Vohra A, Goswami D Y, Deshpande D A, et al. Enhanced photocatalytic inactivation of bacterial spores on surfaces in air[J]. J Ind Microbiol Biotechnol, 2005, (32): 364-370
[5] Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, (293): 269-271
[6] Li X, Kako T, Ye J. 2-Propanol photodegradation over lead niobates under visible light irradiation[J]. Appl Catal, A, 2007, (326): 1-7
[7] Zhang X, Ai Z, Jia F, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. J Phys Chem C, 2008, (112): 747-753
[8] Henle J, Simon P, Frenzel A, et al. Nanosized BiOX (X=Cl, Br, I) particles synthesized in reverse microemulsions[J]. Chem Mater, 2007, (19): 366-373
[9] Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. J Am Chem Soc, 1999, (121): 11 459-11 467
[10] Fu H, Pan C, Yao W, et al. Visible-Light-Induced degradation of rhodamine B by nanosized Bi2WO6[J]. J Phys Chem B, 2005, (109): 22 432-22 439
[11] Grice J D. A solution to the crystal structures of bismutite and beyerite[J]. Can Mineral, 2002, (40): 693-698
[12] Chen R, So M, Yang J, et al. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate[J]. Chem Commun, 2006, (21): 2 265-2 267
[13] Liu Y, Wang Z, Huang B, et al. Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet[J]. Appl Surf Sci, 2010, (257): 172-175
[14] Zheng Y, Duan F, Chen M, et al. Synthetic Bi2O2CO3 nanostructures: Novel photocatalyst with controlled special surface exposed[J]. J Mol Catal A: Chem, 2010, (317): 34-40
[15] Zhao T, Zai J, Zou M, et al. Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity[J]. Cryst Eng Comm, 2011, (13): 4 010-4 017
[16] Cao X, Zhang L, Chen X, et al. Persimmon-Like (BiO)2CO3 microstructures: Hydrothermal preparation, photocatalytic properties and their conversion into Bi2S3[J]. Cryst Eng Comm, 2011, (13): 1 939-1 945
[17] Cao J, Li X, Lin H, et al. Surface acid etching of (BiO)2CO3 to construct (BiO)2CO3/BiOX (X=Cl, Br, I) heterostructure for methyl orange removal under visible light[J]. Appl Surf Sci, 2013,(266): 294-299
[18] Dong F, Sun Y, Fu M, et al. Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst[J]. Langmuir, 2012, (28): 766-773
[19] Hu C, Lan Y, Qu J, et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria[J]. J Phys Chem B, 2006, (110): 4 066-4 072
[20] Zhu Q, Wang W, Lin L, et al. Facile synthesis of the novel Ag3VO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability[J]. J Phys Chem C, 2013, (117): 5 894-5 900
[21] Ye L, Liu J, Gong C, et al. Two different roles of metallic Ag on Ag/AgX/BiOX (X=Cl, Br) visible light photocatalysts: Surface plasmon resonance and Z-scheme bridge[J]. ACS Catal, 2012, (2): 1 677-1 683
[22] Cao J, Li X, Lin H, Chen S, et al. In situ preparation of novel p-n junction photocatalyst BiOI/(BiO)2CO3 with enhanced visible light photocatalytic activity[J]. J Hazar Mater, 2012, (239): 316-324
[23] Zhang Y, Mu J. One-Pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites[J]. J Colloid Interface Sci, 2007, (309): 478-484
[24] Kuai L, Geng B, Chen X, et al. Facile subsequently light-induced route to highly efficient and stable sunlight-driven Ag-AgBr plasmonic photocatalyst[J]. Langmuir, 2010, (26): 18 723-18 727
[25] Tang J, Zou Z, Ye J. Effects of substituting Sr2+ and Ba2+ for Ca2+ on the structural properties and photocatalytic behaviors of CaIn2O4[J]. Chem Mater, 2004, (16): 1 644-1 649
[26] Kontos A I, Kontos A G, Raptis Y S, et al. Nitrogen modified nanostructured titania: Electronic, structural and visible-light photocatalytic properties[J]. Phys Stat Sol (RRL), 2008, (2): 83-85
[27] Lin H, Cao J, Luo B, et al. Synthesis of novel Z-scheme AgI/Ag/AgBr composite with enhanced visible light photocatalytic activity[J]. Catal Commun, 2012, (21): 91-95
[28] Madhusudan P, Ran J R, Zhang J, et al. Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity[J]. Appl Catal, B, 2011, (110): 286-295
[29] Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. Am Mineral, 2000, (85): 543-556
[30] Kong L, Jiang Z, Lai H, et al. Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts[J]. J Catal, 2012, (293): 116-125
[31] Zhang N, Liu S, Fu X, et al. Synthesis of M@TiO2 (M=Au, Pd, Pt) core-shell nanoconnposites with tunable photoreactivity[J]. J Phys Chem C, 2011, (115): 9 136-9 145
[32] Zhang Y, Tang Z, Fu X, et al. Nanocomposite of Ag-AgBr-TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase[J]. J Appl Catal B, 2011, (106): 445-452
[33] Tada H, Mistsu T, Kiyonaga T, et al. All-Solid-State Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nat Mater, 2006, (5): 782-786
|