[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5 358):37-38
[2] Song Z, Li Q, Gao L. Preparation and properties of nano-TiO2powders[J].Journal of Material Science Technology, 1997, 13: 321-323
[3] Liu K, Sakurai M, Liao M, et al. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles[J]. Journal of Physical Chemistry, 2010, 114(46):19 835-19 839
[4] Mokhtarimehr M, Eshaghi A, Pakshir M. Self-Cleaning properties of vanadium doped TiO2 sol-gel derived thin films[J]. New Journal of Glass and Ceramics, 2013,3:87-90
[5] Kiwi J, Graetzel M. Optimization of conditions for photochemical water cleavage aqueous platinum/TiO2 (anatase) dispersions under ultraviolet light[J]. Journal of Physical Chemistry, 1984,88(7):1 302-1 307
[6] Kiwi J. The effect of promoters on the photochemical water cleavage in suspensions of Pt-loaded TiO2 with increased light to chemical conversion efficiency[J]. Homogeneous and Heterogeneous Photocatalysis, 1986,174: 275-302
[7] Yoshida Y, Matsuoka M, Moon S C, et al. Photocatalytic decomposition of liquid-water on the Pt-loaded TiO2 catalysts: Effects of the oxidation states of Pt species on the photocatalytic reactivity and the rate of the back reaction[J]. Research on Chemical Intermediates, 2000, 26(6):567-574
[8] Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12):515-582
[9] Shi J, Ma L, Wu P, et al. A novel Sn2Sb2O7 nanophotocatalyst for visible-light-driven H2evolution[J].Nano Research, 2012, 5(8):576-583
[10] Osterloh F E. Inorganic materials as catalysts for photochemical splitting of water[J]. Chemistry Material, 2008, 20:35-54
[11] Ni M, Leung M K H, Leung D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production[J]. Renewable and Sustainable Energy Review, 2007, 11(3):401-425
[12] Liu G, Zhang X, Xu Y, et al. The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities[J]. Chemosphere, 2005, 59(9): 1 367-1 371
[13] Rehman S, Ullah R, Butt A M, et al. Strategies of making TiO2 and ZnO visible light active[J]. Journal of Hazard Material, 2009, 170(2/3): 560-569
[14] Navarro R M, Valle F D, de la Mano J A V, et al. Photocatalytic water splitting under visible light: Concept and catalysts development [J]. Advances in Chemical Engineering, 2009, 36: 111-143
[15] Hussain S T, Khan K, Hussain R. Size control synthesis of sulfur doped titanium dioxide (anatase) nanoparticles, its optical property and its photo catalytic reactivity for CO2+H2O conversion and phenol degradation[J]. Journal of Natural Gas Chemistry, 2009, 18(4):383-391
[16] Hidalgo M C, Maicu M, Navío J A, et al. Photocatalytic properties of surface modified platinised TiO2: Effects of particle size and structural composition[J]. Catalysis Today, 2007, 129(1/2): 43-49
[17] 李秋叶,吕功煊.光催化分解水制氢研究新进展[J].分子催化, 2007, 21: 590-598 Li Qiuye, Lv Gongxuan. New process of hydrogen production by photocatalytic water splitting [J]. Journal ofMolecular Catalysis, 2007, 21: 590-598 (in Chinese)
[18] Hwang S H, Song J, Jung J, et al. Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent[J]. Chemical Communications, 2011, 47(32): 9 164-9 166
[19] Wang N, Li X, Wang Y, et al. Synthesis of ZnO/TiO2nanotube composite film by a two-step route[J]. Materials Letters, 2008, 62(21/22): 3 691-3 693
[20] Yan H, Yang Y, Tong D, et al. Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42-/ZrO2 and SO42-/ZrO2-Al2O3 solid acid catalysts[J]. Catalysis Communications, 2009, 10(11): 1 558-1 563
[21] Laokiat L, Khemthong P, Grisdanurak N, et al. Photocatalytic degradation of benzene, toluene, ethylbenzene, and xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglasscloth[J]. Korean Journal of Chemical Engineering, 2012, 29(3): 377-383
|