[1] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting [J]. Chemical Society Reviews, 2009, 38(1): 253-278
[2] Hayashi H, Lightcap I V, Tsujimoto M, et al. Electron transfer cascade by organic/inorganic ternary composites of porphyrin, zinc oxide nanoparticles, and reduced graphene oxide on a tin oxide electrode that exhibits efficient photocurrent generation [J]. Journal of the American Chemical Society, 2011, 133(20):7 684-7 687
[3] Marin M L, Santos-Juanes L, Arques A, et al. Organic photocatalysts for the oxidation of pollutants and model compounds[J]. Chemical Reviews, 2012, 112(3): 1 710-1 750
[4] Mopper K, Zhou X. Hydroxyl radical photoproduction in the sea and its potential impact on marine processes [J]. Science, 1990, 250(4 981): 661-664
[5] Miranda M A, Garcia H. 2,4,6-Triphenyl pyrylium tetrafluoroborate as an electron-transfer photosensitizer [J]. Chemical Reviews, 1994, 94(4): 1 063-1 089
[6] Abe T, Nagai K, Kaneko M, et al. Novel and efficient system of a visible-light-responsive organic photoelectrocatalyst working in a water phase [J]. Chem Phys Chem, 2004, 5(5): 716-720
[7] Abe T, Nagai K, Kabutomori S, et al. An organic photoelectrode working in the water phase: Visible-Light-Induced dioxygen evolution by a perylene derivative/cobalt phthalocyanine bilayer [J]. Angewandte Chemie-International Edition, 2006, 45(17): 2 778-2 781
[8] Marin M L, Santos-Juanes L, Arques A, et al. Organic photocatalysts for the oxidation of pollutants and model compounds [J]. Chemical Reviews, 2011, 112(3): 1 710-1 750
[9] Xiong Z, Xu Y. Immobilization of palladium phthalocyaninesulfonate onto anionic clay for sorption and oxidation of 2,4,6-trichlorophenol under visible light irradiation [J]. Chemistry of Materials, 2007, 19(6): 1 452-1 458
[10] Amat A M, Arques A, Bossmann S H, et al. A "Camel through the eye of a needle": Direct introduction of the TPP+ ion inside Y-zeolites by formal ion exchange in aqueous medium [J]. Angewandte Chemie-International Edition, 2003, 42(14):1 653-1 655
[11] 高冠道, 张萌, 张爱勇, 等. 中孔材料HMS固载磺酸铁酞菁光催化剂的制备方法:中国,101590428A[P].
[12] Ma W, Li J, Tao X, et al. Efficient degradation of organic pollutants by using dioxygen activated by resin-exchanged Iron(II) bipyridine under visible irradiation [J]. Angewandte Chemie-International Edition, 2003, 42(9): 1 059-1 062
[13] Xiong Z, Xu Y, Zhu L, et al. Enhanced photodegradation of 2,4,6-trichlorophenol over palladium phthalocyanine-sulfonate modified organobentonite [J]. Langmuir, 2005, 21(23): 10 602-10 607
[14] Abe T, Tobinai S, Taira N, et al. Molecular hydrogen evolution by organic p/n bilayer film of phthalocyanine/fullerene in the entire visible-light energy region[J]. Journal of Physical Chemistry C, 2011, 115(15): 7 701-7 705
[15] Abe T, Tanno Y, Ebina T, et al. Enhanced photoanodic output at an organic p/n bilayer in the water phase by means of the formation of whiskered phthalocyanine [J]. ACS Applied Materials & Interfaces, 2013, 5(4): 1 248-1 253
[16] Nagai K, Abe T, Kaneyasu Y, et al. A full-spectrum visible-light-responsive organophotocatalyst film for removal of trimethylamine [J]. Chem Sus Chem, 2011, 4(6): 727-730
[17] Abe T, Chiba J, Ishidoya M, et al. Organophotocatalysis system of p/n bilayers for wide visible-light-induced molecular hydrogen evolution [J]. RSC Advances, 2012, 2(21): 7 992-7 996
[18] Abe T, Taira N, Tanno Y, et al. Decomposition of hydrazine by an organic fullerene-phthalocyanine p-n bilayer photocatalysis system over the entire visible-light region [J]. Chemical Communications, 2014, 50(16): 1 950-1 952
[19] Guo P, Chen P, Ma W, et al. Morphology-Dependent supramolecular photocatalytic performance of porphyrin nanoassemblies: From molecule to artificial supramolecular nanoantenna [J]. Journal of Materials Chemistry, 2012, 22(38): 20 243-20 249
[20] Chen S, Jacobs D L, Xu J, et al. 1D nanofiber composites of perylene diimides for visible-light-driven hydrogen evolution from water [J]. RSC Advances, 2014, 4(89): 48 486-48 491
[21] Wang Z, Medforth C J, Shelnutt J A. Self-Metallization of photocatalytic porphyrin nanotubes[J]. Journal of the American Chemical Society, 2004, 126(51): 16 720-16 721
[22] Jang J H, Jeon K S, Oh S, et al. Synthesis of Sn-porphyrin-intercalated trititanate nanofibers: Optoelectronic properties and photocatalytic activities [J]. Chemistry of Materials, 2007, 19(8): 1 984-1 991
[23] Guo P, Chen P, Liu M. One-Dimensional porphyrin nanoassemblies assisted via graphene oxide: Sheetlike functional surfactant and enhanced photocatalytic behaviors [J]. ACS Applied Materials & Interfaces, 2013, 5 (11): 5 336-5 345
[24] Chen Y, Zhang C, Zhang X, et al. One-Step growth of organic single-crystal p-n nano-heterojunctions with enhanced visible-light photocatalytic activity [J]. Chemical Communications, 2013, 49(80): 9 200-9 202
[25] 杨建东, 王都留, 卢小泉. 卟啉微纳米材料的制备及应用研究进展 [J]. 应用化学, 2012, 29(10): 1 099-1 106 Yang Jiandong, Wang Duliu, Lu Xiaoquan. Recent development in the preparation and application of porphyrin micro-and nanomaterials[J]. Chinese Journal of Applied Chemistry, 2012, 29(10): 1 099-1 106(in Chinese)
[26] 袁广才, 徐征, 赵谡玲, 等. 对以并五苯和酞菁铜为不同有源层的有机薄膜晶体管特性研究 [J]. 物理学报, 2008, 57(9): 5 911-5 917 Yuan Guangcai, Xu Zheng, Zhao Suling, et al. Study of the characteristics of organic thin film transistors based on different active layers of pentacene and CuPc thin films[J]. Acta Physica Sinica, 2008, 57(9): 5 911-5 917(in Chinese)
[27] Yang F, Sun K, Forrest S R. Efficient solar cells using all-organic nanocrystalline networks[J]. Advanced Materials, 2007, 19(23): 4 166-4 171
[28] Medforth C J, Wang Z, Martin K E, et al. Self-Assembled porphyrin nanostructures[J]. Chemical Communications, 2009, (47): 7 261-7 277
[29] Chen Y, Huang Z, Yue M, et al. Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity [J]. Nanoscale, 2014, 6(2): 978-985
|