[1] Tong Z, Yang D, Xiao T, et al. Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation[J]. Chemical Engineering Journal, 2015, 260:117-125
[2] Wang C, Hu L, Chai B, et al. Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light[J]. Applied Surface Science, 2018, 430:243-252
[3] Tada H, Fujishima M, Kobayashi H. Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion[J]. Chemical Society Reviews, 2011, 40(7):4232-4243
[4] Sajan C P, Wageh S, Al-Ghamdi A A, et al. TiO2 nanosheets with exposed {001} facets for photocatalytic applications[J]. Nano Research, 2016, 9(1):3-27
[5] Tang Q, Meng X, Wang Z, et al. One-step electrospinning synthesis of TiO2/g-C3N4 nanofibers with enhanced photocatalytic properties[J]. Applied Surface Science, 2018, 430:253-262
[6] Chang F, Zhang J, Xie Y, et al. Fabrication, characterization, and photocatalytic performance of exfoliated g-C3N4-TiO2 hybrids[J]. Applied Surface Science, 2014, 311:574-581
[7] Hu L, Yan J, Wang C, et al. Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance[J]. Chinese Journal of Catalysis, 2019, 40(3):458-469
[8] Martin D J, Qiu K, Shevlin S A, et al. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride[J]. Angewandte Chemie International Edition, 2014, 53(35):9240-9245
[9] Bian J, Li Q, Huang C, et al. Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications[J]. Nano Energy, 2015, 15:353-361
[10] Chai B, Yan J, Wang C, et al. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride[J]. Applied Surface Science, 2017, 391:376-383
[11] Chai B, Liao X, Song F, et al. Fullerene modified C3N4 composites with enhanced photocatalytic activity under visible light irradiation[J]. Dalton Transactions, 2014, 43(3):982-989
[12] Wen J, Xie J, Chen X, et al. A review on g-C3N4-based photocatalysts[J]. Applied Surface Science, 2017, 391:72-123
[13] Ye S, Wang R, Wu M, et al. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction[J]. Applied Surface Science, 2015, 358:15-27
[14] Ma Y, Liu E, Hu X, et al. A simple process to prepare few-layer g-C3N4 nanosheets with enhanced photocatalytic activities[J]. Applied Surface Science, 2015, 358:246-251
[15] Li F, Zhao Y, Wang Q, et al. Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl modification[J]. Journal of Hazardous Materials, 2015, 283:371-381
[16] Han Q, Wang B, Gao J, et al. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution[J]. ACS Nano, 2016, 10(2):2745-2751
[17] He F, Chen G, Yu Y, et al. Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity[J]. ACS Applied Materials & Interfaces, 2014, 6(10):7171-7179
[18] Zhang P, Li X, Shao C, et al. Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis[J]. Journal of Materials Chemistry A, 2015, 3(7):3281-3284
[19] Li K, Gao S, Wang Q, et al. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation[J]. ACS Applied Materials & Interfaces, 2015, 7(17):9023-9030
[20] Wang X, Yang W, Li F, et al. In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties[J]. Industrial & Engineering Chemistry Research, 2013, 52(48):17140-17150
[21] Xu J, Wang G, Fan J, et al. G-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells[J]. Journal of Power Sources, 2015, 274:77-84
[22] Adhikari S P, Awasthi G P, Kim H J, et al. Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation[J]. Langmuir, 2016, 32(24):6163-6175
[23] Wang M, Liu Z, Fang M, et al. Enhancement in the photocatalytic activity of TiO2 nanofibers hybridized with g-C3N4 via electrospinning[J]. Solid State Sciences, 2016, 55:1-7
[24] Wang C, Tan X, Yan J, et al. Electrospinning direct synthesis of magnetic ZnFe2O4/ZnO multi-porous nanotubes with enhanced photocatalytic activity[J]. Applied Surface Science, 2017, 396:780-790
[25] Zhu B, Xia P, Li Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst[J]. Applied Surface Science, 2017, 391:175-183
[26] Yu J, Wang S, Low J, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics, 2013, 15(39):16883-16890
|