[1] 蒋平平, 张书源, 冷炎, 等. 催化合成环保增塑剂的研究及其应用进展[J]. 化工进展, 2012, 31(5):953-964 Jiang Pingping, Zhang Shuyuan, Leng Yan, et al. Research and application progress of the catalytic synthesis of environmental plasticizers[J]. Chemical Industry and Engineering Progress, 2012, 31(5):953-964(in Chinese)
[2] Crespo J E, Balart R, Sanchez L, et al. Substitution of di(2-ethylhexyl) phthalate by di(isononyl) cyclohexane-1, 2-dicarboxylate as a plasticizer for industrial vinyl plastisol formulations[J]. Journal of Applied Polymer Science, 2007, 104(2):1215-1220
[3] EFSA.Opinion of the scientific panel on food additives,flavourings,processing aids and materials in contact with food (AFC) on a request related to a 12th list of substances for food contact materials[J]. EFSA J,2006,(395/401):1-21
[4] 汪多仁. 环氢化邻苯二甲酸二异壬酯的开发与应用进展[J]. 合成材料老化与应用, 2010, 39(3):41-48 Wang Duoren. Development and use of DEHCH[J]. Synthetic Materials Aging and Application, 2010, 39(3):41-48(in Chinese)
[5] Hughes B J, Cox K, Bhat V. Derivation of an oral reference dose (RfD) for di 2-ethylhexyl cyclohexan-1, 4-dicarboxylate (DEHCH), an alternative to phthalate plasticizers[J]. Regulatory Toxicology and Pharmacology, 2018, 92:128-137
[6] Lende A B, Bhattacharjee S, Lu W, et al. Hydrogenation of dioctyl phthalate over a Rh-supported Al modified mesocellular foam catalyst[J]. New Journal of Chemistry, 2019, 43(14):5623-5631
[7] Xu Y, Wang Y, Wu C, et al. Structure effect of activated carbon in Ru/AC catalysts for hydrogenation of phthalates[J]. Catalysis Communications, 2019, doi:10.1016/j.catcom.2019.105825
[8] Zhao J, Xue M, Huang Y, et al. Hydrogenation of dioctyl phthalate over supported Ni catalysts[J]. Catalysis Communications, 2011, 16(1):30-34
[9] Nie S, Li H, Qin J, et al. An active and stable Ni/MMT-AE catalyst for dioctyl phthalate hydrogenation[J]. Molecular Catalysis, 2020, doi:10.1016/j.mcat.2020.111156
[10] Eblagon K M, Tam K, Tsang S C E. Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications[J]. Energy & Environmental Science, 2012, 5(9):8621-8630
[11] 熊建平, 汪宝和, 朱璟, 等. 新型苯加氢制环己烯Ru-B/ZnO-ZrO2催化剂的制备与表征[J]. 化学工业与工程, 2013, 30(1):20-26 Xiong Jianping, Wang Baohe, Zhu Jing, et al. Preparation and characterization of a novel catalyst Ru-B/ZnO-ZrO2 for hydrogenation of benzene to cyclohexene[J]. Chemical Industry and Engineering, 2013, 30(1):20-26(in Chinese)
[12] Qu E, Luo J, Di X, et al. Selective hydrogenation of dimethyl terephthalate to 1, 4-cyclohexane dicarboxylate by highly dispersed bimetallic Ru-Re/AC catalysts[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(2):1140-1147
[13] Xu Y, Wu C, Wang Y, et al. Cooperation between Pt and Ru on RuPt/AC bimetallic catalyst in the hydrogenation of phthalates[J]. Chinese Chemical Letters, 2021, 32(1):516-520
[14] Li X, Sun Z, Chen J, et al. One-pot conversion of dimethyl terephthalate into 1,4-cyclohexanedimethanol with supported trimetallic RuPtSn catalysts[J]. Industrial & Engineering Chemistry Research, 2014, 53(2):619-625
[15] Hungria A B, Raja R, Adams R D, et al. Single-step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst[J]. Angewandte Chemie International Edition, 2006, 45(29):4782-4785
[16] Zhu L, Cao M, Li L, et al. Synthesis of different ruthenium nickel bimetallic nanostructures and an investigation of the structure-activity relationship for benzene hydrogenation to cyclohexane[J]. ChemCatChem, 2014, 6(7):2039-2046
[17] Jia H, Yang Z, Yun X, et al. Confined NiRu bimetallic catalysts for the hydrogenation of dimethyl terephthalate to dimethyl cyclohexane-1, 4-dicarboxylate[J]. Industrial & Engineering Chemistry Research, 2019, 58(51):22702-22708
[18] Zhu L, Zheng J, Yu C, et al. Effect of the thermal treatment temperature of RuNi bimetallic nanocatalysts on their catalytic performance for benzene hydrogenation[J]. RSC Advances, 2016, 6(16):13110-13119
[19] Mori K, Miyawaki K, Yamashita H. Ru and Ru-Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia-borane[J]. ACS Catalysis, 2016, 6(5):3128-3135
[20] Tada S, Kikuchi R, Wada K, et al. Long-term durability of Ni/TiO2 and Ru-Ni/TiO2 catalysts for selective CO methanation[J]. Journal of Power Sources, 2014, 264:59-66
[21] Tada S, Kikuchi R, Takagaki A, et al. Study of RuNi/TiO2 catalysts for selective CO methanation[J]. Applied Catalysis B:Environmental, 2013, 140/141:258-264
[22] Yu H, Yang X, Wu Y, et al. Bimetallic Ru-Ni/TiO2 catalysts for hydrogenation of N-ethylcarbazole:Role of TiO2 crystal structure[J]. Journal of Energy Chemistry, 2020, 40:188-195
[23] He X, Kong L, Li J, et al. Structure stability and magnetic properties of the Ni-Ru system studied by ab initio and molecular dynamics calculations together with ion beam mixing[J]. Acta Materialia, 2006, 54(12):3375-3381
[24] Luo Z, Zheng Z, Li L, et al. Bimetallic Ru-Ni catalyzed aqueous-phase guaiacol hydrogenolysis at low H2 pressures[J]. ACS Catalysis, 2017, 7(12):8304-8313
[25] Yang L, Shan S, Loukrakpam R, et al. Role of support-nanoalloy interactions in the atomic-scale structural and chemical ordering for tuning catalytic sites[J]. Journal of the American Chemical Society, 2012, 134(36):15048-15060
[26] Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073):1209-1212
[27] Phan-Vu D H, Tan C. Synthesis of phthalate-free plasticizers by hydrogenation in water using RhNi bimetallic catalyst on aluminated SBA-15[J]. RSC Advances, 2017, 7(30):18178-18188
[28] Ferrando R, Jellinek J, Johnston R L. Nanoalloys:From theory to applications of alloy clusters and nanoparticles[J]. Chemical Reviews, 2008, 108(3):845-910
[29] Zhu L, Sun H, Zheng J, et al. Combining Ru, Ni and Ni(OH)2 active sites for improving catalytic performance in benzene hydrogenation[J]. Materials Chemistry and Physics, 2017, 192:8-16
[30] 谷俊峰, 崔洪友, 钱绍松, 等. DOP液相催化加氢制DEHCH及其动力学研究[J]. 塑料工业, 2012, 40(2):87-91 Gu Junfeng, Cui Hongyou, Qian Shaosong, et al. Study on liquid hydrogenation and kinetics of DOP to DEHCH[J]. China Plastics Industry, 2012, 40(2):87-91(in Chinese)
[31] Yu W, Hsu Y P, Tan C. Synthesis of rhodium-platinum bimetallic catalysts supported on SBA-15 by chemical fluid deposition for the hydrogenation of terephthalic acid in water[J]. Applied Catalysis B:Environmental, 2016, 196:185-192
[32] Komanoya T, Kobayashi H, Hara K, et al. Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis[J]. Applied Catalysis A:General, 2011, 407(1/2):188-194
[33] Zhang Y, Maroto-Valiente A, Rodriguez-Ramos I, et al. Synthesis and characterization of carbon black supported Pt-Ru alloy as a model catalyst for fuel cells[J]. Catalysis Today, 2004, 93/94/95:619-626
[34] Pham T N, Shi D, Sooknoi T, et al. Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts[J]. Journal of Catalysis, 2012, 295:169-178
[35] Bond G C, Rajaram R R, Burch R. Thermal analysis of catalyst precursors. Part 1. Temperature-programmed evolution of hydrogen chloride during the reduction of supported ruthenium trichloride[J]. Applied Catalysis, 1986, 27(2):379-391
[36] Manfro R L, Pires T P M D, Ribeiro N F P, et al. Aqueous-phase reforming of glycerol using Ni-Cu catalysts prepared from hydrotalcite-like precursors[J]. Catalysis Science & Technology, 2013, doi:10.1039/c3cy20770f
[37] Ribeiro L S, Delgado J J, Órfão J J M, et al. Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol[J]. Applied Catalysis B:Environmental, 2017, 217:265-274
[38] Das P C, Pradhan N C, Dalai A K, et al. Carbon monoxide hydrogenation over various titania-supported Ru-Ni bimetallic catalysts[J]. Fuel Processing Technology, 2004, 85(13):1487-1501
[39] 张鹏, 张群峰, 李小年. Ni-Ru/SiO2催化间苯二甲腈加氢制备间苯二甲胺[J]. 工业催化, 2012, 20(7):71-75 Zhang Peng, Zhang Qunfeng, Li Xiaonian. Preparation of m-xylylenediamine by the hydrogenation of isophthalonitrile on Ni-Ru/SiO2 catalysts[J]. Industrial Catalysis, 2012, 20(7):71-75(in Chinese)
[40] Raja R, Khimyak T, Thomas J M, et al. Single-step, highly active, and highly selective nanoparticle catalysts for the hydrogenation of key organic compounds[J]. Angewandte Chemie International Edition, 2001, 40(24):4638-4642
[41] 张亮亮. 微波法制备碳载金属硅化物及其加氢性能的研究[D]. 北京:中国地质大学(北京), 2018 Zhang Liangliang. Microwave-assisted preparation of carbon supported metal silicides as catalysts for hydrogenation[D]. Beijing:China University of Geosciences, 2018(in Chinese)
[42] 郁茵茵. 绿色反应体系中催化选择加氢的研究[D]. 上海:华东理工大学, 2013 Yu Yinyin. The researches on catalytic chemoselective hydrogenation reaction in novel green reaction systems[D]. Shanghai:East China University of Science and Technology, 2013(in Chinese)
|