[1] San X, Zhang Y, Shen W, et al. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy & Fuels, 2009, 23(5):2843-2844
[2] Li X, San X, Zhang Y, et al. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts[J]. Chem Sus Chem, 2010, 3(10):1192-1199
[3] Kim S, Lee M, Choi J, et al. Role of ZnO in Cu/ZnO/Al2O3 catalyst for hydrogenolysis of butyl butyrate[J]. Catalysis Communications, 2011, 12(14):1328-1332
[4] Liao F, Huang Y, Ge J, et al. Morphology-Dependent interactions of ZnO with Cu nanoparticles at the materials' interface in selective hydrogenation of CO2 to CH3OH[J]. Angewandte Chemie International Edition, 2011, 123:2210-2213
[5] Lei H, Nie R, Wu G, et al. Hydrogenation of CO2 to CH3OH over Cu/ZnO catalysts with different ZnO morphology[J]. Fuel, 2015, 154:161-166
[6] Narayanan R, El-Sayed M. Catalysis with transition metal nanoparticles in colloidal solution:Nanoparticle shape dependence and stability[J]. Journal of Physical Chemistry B, 2005, 109(26):12663-12676
[7] Li G, Hu T, Pan G, et al. Morphology-Function relationship of ZnO:Polar planes, oxygen vacancies, and activity[J]. The Journal of Physical Chemistry C, 2008, 112(31):11859-11864
[8] Yang M, Pang G, Li J, et al. Preparation of ZnO nanowires in a neutral aqueous system:Concentration effect on the orientation attachment process[J]. Berichte Der Deutschen Chemischen Gesellschaft, 2006, (19):3818-3822
[9] Peng Y, Xu A, Deng B, et al. Polymer-Controlled crystallization of zinc oxide hexagonal nanorings and disks[J]. Journal of Physical Chemistry B, 2006, 110(7):2988-2993
[10] Li F, Ding Y, Gao P, et al. Single-Crystal hexagonal disks and rings of ZnO:Low-Temperature, large-scale synthesis and growth mechanism[J]. Angewandte Chemie International Edition, 2004, 116:5350-5354
[11] Fujitani T, Nakamura J. The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity[J]. Catalysis Letters, 1998, 56(2):119-124
[12] Gong J, Yue H, Zhao Y, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. Journal of the American Chemical Society, 2012, 134(34):13922-13925
[13] Grohmann I, Peplinski B, Unger W. New entries in the XPS fingerprint database for the characterization of precipitated Cu-Zn-Al oxide catalysts[J]. Surface & Interface Analysis, 1992, 19(1/2):591-594
[14] Silva H, Mateos C, Magén C, et al. Simple hydrothermal synthesis method for tailoring the physicochemical properties of ZnO:Morphology, surface area and polarity[J]. RSC Advances, 2014, 4(4):31166-31176
[15] Wang L, Liu Y, Chen M, et al. Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis[J]. Journal of Catalysis, 2007, 246(1):193-204
[16] Mateos C, Silva H, Tanaka D, et al. CuO/ZnO catalysts for methanol steam reforming:The role of the support polarity ratio and surface area[J]. Applied Catalysis B:Environmental, 2015, 174:67-76
[17] 耿尧辰, 赵玉军, 王胜平, 等. 热稳定性增强的铈改性Cu/SiO2催化剂及在草酸酯加氢制乙二醇反应中的应用[J]. 化学工业与工程, 2015, 32(6):1-6 Gen Yaochen, Zhao Yujun, Wang Shengping, et al. Ceria-Modified Cu/SiO2 catalyst with enhanced thermal stability and its application in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chemical Industry and Engineering, 2015, 32(6):1-6(in Chinese)
[18] 迟涵文, 赵玉军, 王胜平, 等. Cu-MCM-41催化剂的制备及在草酸酯加氢制乙二醇催化性能[J]. 化学工业与工程, 2013, 30(3):1-6 Chi Hanwen, Zhao Yujun, Wang Shengping, et al. Preparation of Cu-MCM-41 catalyst and catalytic performance for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chemical Industry and Engineering, 2013, 30(3):1-6(in Chinese)
[19] 李振花, 李延春, 许根慧. 草酸二乙酯气相催化加氢合成乙二醇的研究[J]. 化学工业与工程, 1993, 10(4):27-33 Li Zhenhua, Li Yanchun, Xu Genhui. Study on hydrogenation of diethyl oxalate to ethylene glycol in gas phase[J]. Chemical Industry and Engineering, 1993, 10(4):27-33(in Chinese)
[20] Wang Y, Shen Y, Zhao Y, et al. Insight into the balancing effect of active Cu species for hydrogenation of carbon-oxygen bonds[J]. ACS Catalysis, 2015, 5(10):6200-6208
[21] Velu S, Suzuki K, Gopinath C, et al. XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxide catalysts[J]. Physical Chemistry Chemical Physics, 2002, 4(10):1990-1999
[22] Rodrigues E, Marchi A, Apesteguia C, et al. Promoting effect of zinc on the vapor-phase hydrogenation of crotonaldehyde over copper-based catalysts[J]. Applied Catalysis A-General, 2005, 294(2):197-207
|