[1] Wang X, Lu X, Liu B, et al. Flexible energy-storage devices:Design consideration and recent progress[J]. Advanced Materials, 2014, 26(28):4763-4782
[2] Service R F. Materials science:New ‘supercapacitor’ promises to pack more electrical punch[J]. Science, 2006, 313(5789):902-902
[3] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2):797-828
[4] 谢小英, 张辰, 杨全红. 超级电容器电极材料研究进展[J]. 化学工业与工程, 2014, 31(1):63-71 Xie Xiaoying, Zhang Chen, Yang Quanhong. The development of electrode materials for supercapacitors[J]. Chemical Industry and Engineering, 2014, 31(1):63-71(in Chinese)
[5] Jost K, Stenger D, Perez C R, et al. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics[J]. Energy & Environmental Science, 2013, 6(9):2698-2705
[6] Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors:From new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22):6816-6854
[7] 叶星柯, 周乾隆, 万中全, 等. 柔性超级电容器电极材料与器件研究进展[J]. 化学通报, 2017, 80(1):10-33, 76 Ye Xingke, Zhou Qianlong, Wan Zhongquan, et al. Research progress in electrode materials and devices of flexible supercapacitors[J]. Chemistry, 2017, 80(1):10-33, 76(in Chinese)
[8] Dubal D P, Chodankar N R, Kim D H, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Reviews, 2018, 47(6):2065-2129
[9] 宋维力, 范丽珍. 超级电容器研究进展:从电极材料到储能器件[J]. 储能科学与技术, 2016, 5(6):788-799 Song Weili, Fan Lizhen. Advances in supercapacitors:From electrodes materials to energy storage devices[J]. Energy Storage Science and Technology, 2016, 5(6):788-799(in Chinese)
[10] Zhang L, Shi D, Liu T, et al. Nickel-Based materials for supercapacitors[J]. Materials Today, 2019, 25:35-65
[11] Liu W, Feng K, Zhang Y, et al. Hair-Based flexible knittable supercapacitor with wide operating voltage and ultra-high rate capability[J]. Nano Energy, 2017, 34:491-499
[12] Yu O, Huang R, Xia X, et al. Hierarchical structure electrodes of NiO ultrathin nanosheets anchored to NiCo2O4 on carbon cloth with excellent cycle stability for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2019, 355:416-427
[13] Vongehr S. Comment on "Flexible asymmetric supercapacitors based on nitrogen-doped graphene hydrogels with embedded nickel hydroxide nanoplates"[J]. Chem Sus Chem, 2017, 10(10):2309-2311
[14] Zhu S, Wang Z, Huang F, et al. Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(20):9960-9969
[15] Wu S, Guo H, Hui K, et al. Rational design of integrated CuO@CoNi(OH)2 nanowire arrays on copper foam for high-rate and long-life supercapacitors[J]. Electrochimica Acta, 2019, 295:759-768
[16] Wang T, Zhang S, Yan X, et al. 2-Methylimidazole-derived Ni-Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors[J]. ACS Applied Materials & Interfaces, 2017, 9(18):15510-15524
[17] Zhao Y, He X, Chen R, et al. A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures[J]. Chemical Engineering Journal, 2018, 352:29-38
[18] Wu X, Han Z, Zheng X, et al. Core-Shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties[J]. Nano Energy, 2017, 31:410-417
[19] Wu P, Cheng S, Yao M, et al. A low-cost, self-standing NiCo2O4@CNT/CNT multilayer electrode for flexible asymmetric solid-state supercapacitors[J]. Advanced Functional Materials, 2017, doi:10.1002/adfm.201702160
[20] Huang Y, Zhu M, Pei Z, et al. A shape memory supercapacitor and its application in smart energy storage textiles[J]. Journal of Materials Chemistry A, 2016, 4(4):1290-1297
[21] Liu L, Shen B, Jiang D, et al. Watchband-Like supercapacitors with body temperature inducible shape memory ability[J]. Advanced Energy Materials, 2016, doi:10.1002/aenm.201600763
[22] Qing C, Yang C, Chen M, et al. Design of oxygen-deficient NiMoO4 nanoflake and nanorod arrays with enhanced supercapacitive performance[J]. Chemical Engineering Journal, 2018, 354:182-190
[23] Wang J, Zhang L, Liu X, et al. Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors[J]. Scientific Reports, 2017, doi:10.1038/srep41088
[24] Shahrokhian S, Naderi L, Mohammadi R. High-Performance fiber-shaped flexible asymmetric microsupercapacitor based on Ni(OH)2 nanoparticles-decorated porous dendritic Ni-Cu film/Cu wire and reduced graphene oxide/carbon fiber electrodes[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):14574-14588
[25] Chen D, Yan S, Chen H, et al. Hierarchical Ni-Mn layered double hydroxide grown on nitrogen-doped carbon foams as high-performance supercapacitor electrode[J]. Electrochimica Acta, 2018, 292:374-382
[26] Li M, Jijie R, Barras A, et al. NiFe layered double hydroxide electrodeposited on Ni foam coated with reduced graphene oxide for high-performance supercapacitors[J]. Electrochimica Acta, 2019, 302:1-9
[27] Boruah B D, Misra A. A flexible ternary oxide based solid-state supercapacitor with excellent rate capability[J]. Journal of Materials Chemistry A, 2016, 4(44):17552-17559
[28] Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature Materials, 2017, 16(2):220-224
[29] Xu X, Shi W, Li P, et al. Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors[J]. Chemistry of Materials, 2017, 29(14):6058-6065
[30] Jiao Y, Hong W, Li P, et al. Metal-Organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor[J]. Applied Catalysis B:Environmental, 2019, 244:732-739
[31] Tian Z, Yin J, Wang X, et al. Construction of Ni3S2 wrapped by rGO on carbon cloth for flexible supercapacitor application[J]. Journal of Alloys and Compounds, 2019, 777:806-811
[32] Zhu J, Tang S, Wu J, et al. Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4-NiCo2S4 Composite nanotube-built multitripod architectures as advanced flexible electrodes[J]. Advanced Energy Materials, 2017, doi:10.1002/aenm.201601234
[33] Cheng S, Shi T, Huang Y, et al. Rational design of nickel cobalt sulfide/oxide core-shell nanocolumn arrays for high-performance flexible all-solid-state asymmetric supercapacitors[J]. Ceramics International, 2017, 43(2):2155-2164
[34] He X, Liu Q, Liu J, et al. High-Performance all-solid-state asymmetrical supercapacitors based on petal-like NiCo2S4/Polyaniline nanosheets[J]. Chemical Engineering Journal, 2017, 325:134-143
[35] Wang Q, Ma Y, Wu Y, et al. Flexible asymmetric threadlike supercapacitors based on NiCo2Se4 nanosheet and NiCo2O4/polypyrrole electrodes[J]. ChemSusChem, 2017, 10(7):1427-1435
[36] Wang Q, Zhang Y, Jiang H, et al. Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate:A potential electrode material for flexible all solid-state asymmetric supercapacitor[J]. Chemical Engineering Journal, 2019, 362:818-829
|