[1] Enthaler S, Langermann J V, Schimdt T. Carbon dioxide and formic acid: The couple for environmental-friendly hydrogen storage?[J]. Energy & Environmental Science, 2010, 3(9): 1 207-1 217
[2] Whipple D T, Kenis P J A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction[J]. The Journal of Physical Chemistry Letters, 2010, 1(24): 3 451-3 458
[3] Todoroki M, Hara K, Kudo A, et al. Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution[J]. Journal of Electroanalytical Chemistry, 1995, 394(1/2): 199-203
[4] Köleli F, Atilan T, Palamut N, et al. Electrochemical reduction of CO2 at Pb-and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media[J]. Journal of Applied Electrochemistry, 2003, 33(5): 447-450
[5] Machunda R L, Ju H, Lee J. Electrocatalytic reduction of CO2 gas at Sn based gas diffusion electrode[J]. Current Applied Physics, 2011, 11(4): 986-988
[6] Hara K, Kudo A, Sakata T. Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte[J]. Journal of Electroanalytical Chemistry, 1995, 391(1/2): 141-147
[7] Azuma M, Hashimoto K, Hiramoto M, et al. Carbon dioxide reduction at low temperature on various metal electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 260(2): 441-445
[8] Wu J, Risalvato F, Ke F, et al. Electrochemical reduction of carbon dioxide: I. Effects of the electrolyte on the selectivity and activity with Sn electrode[J]. Journal of the Electrochemical Society, 2012, 159(7): F353-F359
[9] Hara K, Kudo A, Sakata T. Electrochemcial reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte[J]. Journal of Electroanalytical Chemistry, 1995, 391(1/2): 141-147
[10] Tang W, Peterson A A, Varela A S, et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction[J]. Physical Chemistry Chemical Physics, 2012, 14(1): 76-81
[11] Lee J, Kwon Y. Formic acid from carbon dioxide on nanolayered electrocatalyst[J]. Electrocatalysis, 2010, 1(2/3): 108-115
[12] Shin H C, Liu M. Three-Dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries[J]. Advanced Functional Materials, 2005, 15(4): 582-586
[13] Xing X, Cherevko S, Chung C H. Porous Pd films as effective ethanol oxidation electrocatalysts in alkaline medium[J]. Materials Chemistry Physics, 2011, 126(1/2): 36-40
[14] Cherevko S, Chung C H. The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection[J]. Talanta, 2010, 80(3): 1 371-1 377
[15] Gu C, Mai Y, Zhou J, et al. Non-Aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery[J]. Journal of Power Sources, 2012, 124(15): 200-207
[16] Du Z, Zhang S, Jiang T, et al. Preparation and characterization of three-dimensional tin thin-film anode with good cycle performance[J]. Electrochimica Acta, 2010, 55(10): 3 537-3 541
[17] Trasatti S, Petrii O A. Real surface area measurements in electrochemistry[J]. Pure and Applied Chemistry, 1991, 63(5): 711-734
[18] Bo Z, Wen Z, Kim H, et al. One-Step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented grapheme directly grown on metal[J]. Sci Verse Science Direct, 2012, 50(12): 4 379-4 387
[19] Weng T, Teng H. Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors[J]. Journal of the Electrochemical Society, 2011, 148(4): A368-A373
[20] Hori Y. Electrochemical CO2 reduction on metal electrodes[M]. New York: Springer, 2008
[21] Li H, Oloman C. Development of a continuous reactor for the electro-reduction of carbon dioxide to formate. Part 1: Process variables[J]. Journal of Applied Electrochemistry, 2006, 36(10): 1 105-1 115
|