[1] Shen B, Zhai W, Zheng W. Ultrathin flexible graphene film:An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials, 2014, 24(28):4542-4548
[2] Yu G, Hu L, Vosgueritchian M, et al. Solution-Processed graphene/MnO2nanostructured textiles for high-performance electrochemical capacitors[J]. Nano Letters, 2011, 11(7):2905-2911
[3] Fang H, Bai S, Wong C. "White graphene"-hexagonal boron nitride based polymeric composites and their application in thermal management[J]. Composites Communications, 2016, 2:19-24
[4] Nakajima A, Shoji A, Yonemori K, et al. Novel polymer composite having diamond particles and boron nitride platelets for thermal management of electric vehicle motors[J]. Japanese Journal of Applied Physics, 2016, doi:10.7567/JJAP. 55.027101
[5] Zhang K, Tao P, Zhang Y, et al. Highly thermal conductivity of CNF/AlN hybrid films for thermal management of flexible energy storage devices[J]. Carbohydrate Polymers, 2019, 213:228-235
[6] Wang W, Tang B, Ju B, et al. Fe3O4-functionalized graphene nanosheet embedded phase change material composites:Efficient magnetic- and sunlight-driven energy conversion and storage[J]. Journal of Materials Chemistry A, 2017, 5(3):958-968
[7] Yoonessi M, Scheiman D A, Dittler M, et al. High-Temperature multifunctional magnetoactive nickel graphene polyimide nanocomposites[J]. Polymer, 2013, 54(11):2776-2784
[8] Xie G, Xi P, Liu H, et al. A facile chemical method to produce superparamagnetic graphene oxide-Fe3O4hybrid composite and its application in the removal of dyes from aqueous solution[J]. J Mater Chem, 2012, 22(3):1033-1039
[9] He G, Li X, Dai Y, et al. Constructing bioinspired hierarchical structure in polymer based energetic composites with superior thermal conductivity[J]. Composites Part B:Engineering, 2019, 162:678-684
[10] Stankovich S, Piner R D, Nguyen S T. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 2006, 44(15):3342-3347
[11] 陈伟, 郑亚萍. Fe3O4-MWCNTs在环氧树脂中的定向排列[J]. 复合材料学报, 2013, 30(6):54-59 Chen Wei, Zheng Yaping. Alignment of Fe3O4-MWCNTs in epoxy resin[J]. Acta Materiae Compositae Sinica, 2013, 30(6):54-59(in Chinese)
[12] Lee D, Lee B, Park K H, et al. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling[J]. Nano Letters, 2015, 15(2):1238-1244
[13] Yu J, Huang X, Wu C, et al. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties[J]. Polymer, 2012, 53(2):471-480
[14] Shen H, Duan C, Guo J, et al. Facile in situ synthesis of silver nanoparticles on boron nitride nanosheets with enhanced catalytic performance[J]. Journal of Materials Chemistry A, 2015, 3(32):16663-16669
[15] Teng C, Ma C, Lu C, et al. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J]. Carbon, 2011, 49(15):5107-5116
[16] 卢秋影.一种高导热硅橡胶组合物:中国:CN201810524061.6[P].2018-12-21
[17] Mi Y, Liang G, Gu A, et al. Thermally conductive aluminum nitride-multiwalled carbon nanotube/cyanate ester composites with high flame retardancy and low dielectric loss[J]. Industrial & Engineering Chemistry Research, 2013, 52(9):3342-3353
[18] Teng C, Ma C, Kuo-Chan C, et al. Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride[J]. Composites Part B:Engineering, 2012, 43(2):265-271
[19] Xu Y, Chung D, Mroz C. Thermally conducting aluminum nitride polymer-matrix composites[J]. Composites Part A:Applied Science and Manufacturing, 2001, 32(12):1749-1757
[20] Zhao X, Zang C, Ma Q, et al. Thermal and electrical properties of composites based on (3-mercaptopropyl) trimethoxysilane- and Cu-coated carbon fiber and silicone rubber[J]. Journal of Materials Science, 2016, 51(8):4088-4095
[21] Yao Y, Zeng X, Sun R, et al. Highly thermally conductive composite papers prepared based on the thought of bioinspired engineering[J]. ACS Applied Materials & Interfaces, 2016, 8(24):15645-15653
[22] Shen Z, Feng J. Highly thermally conductive composite films based on nanofibrillated cellulose in situ coated with a small amount of silver nanoparticles[J]. ACS Applied Materials & Interfaces, 2018, 10(28):24193-24200
[23] Yang M, Wang X, Wang R, et al. The fabrication and thermal conductivity of epoxy composites with 3D nanofillers of AgNWs@SiO2&GNPs[J]. Journal of Materials Science:Materials in Electronics, 2017, 28(21):16141-16147
[24] Jiao J, Qiu W, Tang J, et al. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries[J]. Nano Research, 2016, 9(5):1256-1266
[25] Du C, Li M, Cao M, et al. Mussel-Inspired and magnetic co-functionalization of hexagonal boron nitride in poly(vinylidene fluoride) composites toward enhanced thermal and mechanical performance for heat exchangers[J]. ACS Applied Materials & Interfaces, 2018, 10(40):34674-34682
[26] Yu C, Zhang J, Li Z, et al. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites[J]. Composites Part A-Applied Science and Manufacturing, 2017, 98:25-31
[27] Wu S, Ladani R B, Zhang J, et al. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites[J]. Carbon, 2015, 94:607-618
[28] Chung S H, Kim H, Jeong S W. Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment[J]. Carbon, 2018, 140:24-29
[29] Wang X, Wu P. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation[J]. ACS Applied Materials & Interfaces, 2018, 10(40):34311-34321
[30] Pan G, Yao Y, Zeng X, et al. Learning from natural nacre:Constructing layered polymer composites with high thermal conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(38):33001-33010
[31] Chen J, Huang X, Sun B, et al. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability[J]. ACS Nano, 2019, 13(1):337-345
[32] Du M, Li X, Wang A, et al. One-Step exfoliation and fluorination of boron nitride nanosheets and a study of their magnetic properties[J]. Angewandte Chemie International Edition, 2014, 53(14):3645-3649
[33] Lin Z, Liu Y, Raghavan S, et al. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix:Toward high performance anisotropic polymer composites for electronic encapsulation[J]. ACS Applied Materials & Interfaces, 2013, 5(15):7633-7640
[34] Kim K, Ju H, Kim J. Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement[J]. Composites Science and Technology, 2016, 123:99-105
[35] Su Z, Wang H, He J, et al. Fabrication of thermal conductivity enhanced polymer composites by constructing an oriented three-dimensional staggered interconnected network of boron nitride platelets and carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2018, 10(42):36342-36351
[36] Zeng X, Yao Y, Gong Z, et al. Ice-Templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small, 2015, 11(46):6205-6213
[37] Lian G, Tuan C, Li L, et al. Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading[J]. Chemistry of Materials, 2016, 28(17):6096-6104
[38] Chen J, Huang X, Zhu Y, et al. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability[J]. Advanced Functional Materials, 2017, doi:10.1002/adfm.201604754
[39] Wang X, Wu P. Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading[J]. Chemical Engineering Journal, 2018, 348:723-731
|