[1] Zhu X, Lobban L L, Mallinson R G, et al. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst[J]. Journal of Catalysis, 2011, 281(1): 21-29
[2] Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & Fuels, 2004, 18(2): 590-598
[3] Perego C, Bosetti A. Biomass to fuels: The role of zeolite and mesoporous materials[J]. Microporous and Mesoporous Materials, 2011, 144(1): 28-39
[4] Saidi M, Samimi F, Karimipourfard D, et al. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy & Environmental Science, 2014, 7(1): 103-129
[5] Bu Q, Lei H, Zacher A H, et al. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis[J]. Bioresource Technology, 2012, 124: 470-477
[6] 林鹿, 何北海, 孙润仓, 等. 木质生物质转化高附加值化学品[J]. 化学进展, 2007, 19(7): 1 206-1 216 Lin Lu, He Beihai, Sun Runcang, et al. High value chemicals from lignocellulosic biomass[J]. Progress in Chemistry, 2007, 19(7): 1 206-1 216(in Chinese)
[7] 孔德金, 杨为民. 芳烃生产技术进展[J]. 化工进展, 2011, 30(1): 16-25 Kong Dejin, Yang Weimin. Advance in technology for production of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 16-25(in Chinese)
[8] 赵岩. 生物质催化转化制备芳烃化合物的研究[D]. 合肥: 中国科学技术大学, 2014 Zhao Yan. Catalytic conversion of biomass into aromatic hydrocarbons[D]. Hefei: University of Science and Technology of China, 2014(in Chinese)
[9] 张勤生, 王来来. 木质素及其模型化合物的加氢脱氧反应研究进展[J]. 分子催化, 2013, 27(1): 89-97 Zhang Qinsheng, Wang Lailai. Research progress on hydrodeoxygenation of lignin and its model compounds[J]. Journal of Molecular Catalysis (China), 2013, 27(1): 89-97(in Chinese)
[10] Vispute T P, Zhang H, Sanna A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science, 2010, 330(6 008): 1 222-1 227
[11] ?enol O. Hydrodeoxygenation of aliphatic and aromatic oxygenates on sulphided catalysts for production of second generation biofuels[J]. Helsinki University of Technology, 2007, 1-25
[12] Massoth F E, Politzer P, Concha M C, et al. Catalytic hydrodeoxygenation of methyl-substituted phenols: Correlations of kinetic parameters with molecular properties[J]. The Journal of Physical Chemistry B, 2006, 110(29): 14 283-14 291
[13] Romero Y, Richard F, Brunet S. Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism[J]. Applied Catalysis B: Environmental, 2010, 98(3): 213-223
[14] 彭会左. 水热法制备钼基硫化催化剂及其加氢脱氧性能研究[D]. 湖南 湘潭: 湘潭大学, 2013 Peng Huizuo. Unsupported sulfided Mo-based catalyst prepared by hydrothermal synthesis for the hydrodeoxygenation[D]. Hunan Xiangtan: Xiangtan University, 2013(in Chinese)
[15] Bui V N, Laurenti D, Afanasiev P, et al. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity[J]. Applied Catalysis B: Environmental, 2011, 101(3): 239-245
[16] Yoosuk B, Tumnantong D, Prasassarakich P. Amorphous unsupported Ni-Mo sulfide prepared by one step hydrothermal method for phenol hydrodeoxygenation[J]. Fuel, 2012, 91(1): 246-252
[17] Schweiger H, Raybaud P, Toulhoat H. Promoter sensitive shapes of Co(Ni)MoS nanocatalysts in sulfo-reductive conditions[J]. Journal of Catalysis, 2002, 212: 33-38
[18] Besenbacher F, Brorson M, Clausen B S, et al. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects[J]. Catalysis Today, 2008, 130(1): 86-96
[19] Bui V N, Laurenti D, Delichère P, et al. Hydrodeoxygenation of guaiacol: Part II: Support effect for CoMoS catalysts on HDO activity and selectivity[J]. Applied Catalysis B: Environmental, 2011, 101(3): 246-255
[20] Viljava T R, Komulainen R S, Krause A O I. Effect of H2S on the stability of CoMo/Al2O3 catalysts during hydrodeoxygenation[J]. Catalysis Today, 2000, 60(1): 83-92
[21] Ryymin E M, Honkela M L, Viljava T R, et al. Competitive reactions and mechanisms in the simultaneous HDO of phenol and methyl heptanoate over sulphided NiMo/γ-Al2O3[J]. Applied Catalysis A: General, 2010, 389(1): 114-121
[22] Zhao H, Li D, Bui P, et al. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts[J]. Applied Catalysis A: General, 2011, 391(1): 305-310
[23] Rensel D J, Rouvimov S, Gin M E, et al. Highly selective bimetallic FeMoP catalyst for C—O bond cleavage of aryl ethers[J]. Journal of Catalysis, 2013, 305: 256-263
[24] Yang Y, Gilbert A, Xu C. Hydrodeoxygenation of bio-crude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: A model compound study using phenol[J]. Applied Catalysis A: General, 2009, 360(2): 242-249
[25] Ghampson I T, Sepúlveda C, Garcia R, et al. Guaiacol transformation over unsupported molybdenum-based nitride catalysts[J]. Applied Catalysis A: General, 2012: 78-84
[26] Ghampson I T, Sepúlveda C, Garcia R, et al. Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: Effects of nitriding methods and support properties[J]. Applied Catalysis A: General, 2012:111-124
[27] 王威燕, 杨运泉, 罗和安, 等. Co对非晶态催化剂Ni-Mo-B加氢脱氧性能的影响[J]. 化工学报, 2010, 61(1): 73-79 Wang Weiyan, Yang Yunquan, Luo Hean, et al. Effect of Co on Ni-Mo-B a morphous catalyst in hydrodeoxygenation[J]. Journal of Chemical Industry and Engineering (China), 2010, 61(1): 73-79(in Chinese)
[28] 王威燕, 张小哲, 杨运泉, 等. La-Ni-Mo-B 非晶态催化剂的制备及其苯酚加氢脱氧催化性能[J]. 物理化学学报, 2012, 28(5): 1 243-1 251 Wang Weiyan, Zhang Xiaozhe, Yang Yunquan, et al. Preparation of La-Ni-Mo-B amorphous catalyst and its catalytic properties for hydrodeoxygenation of phenol[J]. Acta Physico-Chimica Sinica, 2012, 28(5): 1 243-1 251(in Chinese)
[29] Prasomsri T, Shetty M, Murugappan K, et al. Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures[J]. Energy & Environmental Science, 2014, 8: 2 660-2 669
[30] Olcese R N, Bettahar M, Petitjean D, et al. Gas-Phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst[J]. Applied Catalysis B: Environmental, 2012, 115: 63-73
[31] Olcese R, Bettahar M M, Malaman B, et al. Gas-Phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon)[J]. Applied Catalysis B: Environmental, 2013, 129: 528-538
[32] Zhao C, He J, Lemonidou A A, et al. Aqueous-Phase hydrodeoxygenation of bio-derived phenols to cycloalkanes[J]. Journal of Catalysis, 2011, 280(1): 8-16
[33] Horáěek J, Štávová G, Kelbichová V, et al. Zeolite-Beta-Supported platinum catalysts for hydrogenation/hydrodeoxygenation of pyrolysis oil model compounds[J]. Catalysis Today, 2013, 204: 38-45
[34] Gutierrez A, Kaila R K, Honkela M L, et al. Hydrodeoxygenation of guaiacol on noble metal catalysts[J]. Catalysis Today, 2009, 147(3): 239-246
[35] Lin Y, Li C, Wan H, et al. Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts[J]. Energy & Fuels, 2011, 25(3): 890-896
[36] 谭雪松, 庄新姝, 吕双亮, 等. 钯炭催化木质素模型化合物愈创木酚加氢脱氧制备烷烃[J]. 农业工程学报, 2012, 28(21): 193-199 Tan Xuesong, Zhuang Xinzhu, Lv Shuangliang, et al. Hydrodeoxygenation of guaiacol as lignin model compound for alkanes preparation with palladium-carbon catalysts[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(21): 193-199(in Chinese)
[37] 孔榉, 张兴华, 张琦, 等. 复合氧化物负载的 Ni 基催化剂上愈创木酚加氢脱氧性能[J]. 高等学校化学学报, 2013, 34(12): 2 806-2 813 Kong Ju, Zhang Xinghua, Zhang Qi, et al. Hydrodeoxygenation of guaiacol over nickel-based catalyst supported on mixed oxides[J]. Chemical Journal of Chinese Universities, 2013, 34(12): 2 806-2 813(in Chinese)
[38] Zanuttini M S, Lago C D, Querini C A, et al. Deoxygenation of m-cresol on Pt/γ-Al2O3 catalysts[J]. Catalysis Today, 2013, 213: 9-17
[39] Gutierrez A, Kaila R K, Honkela M L, et al. Hydrodeoxygenation of guaiacol on noble metal catalysts[J]. Catalysis Today, 2009, 147(3): 239-246
[40] Boonyasuwat S, Omotoso T, Resasco D E, et al. Conversion of guaiacol over supported Ru catalysts[J]. Catalysis Letters, 2013, 143(8): 783-791
[41] Nie L, Resasco D E. Kinetics and mechanism of m-cresol hydrodeoxygenation on a Pt/SiO2 catalyst[J]. Journal of Catalysis, 2014, 317: 22-29
[42] Ardiyanti A R, Khromova S A, Venderbosch R H, et al. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al2O3 support[J]. Applied Catalysis B: Environmental, 2012, 117: 105-117
[43] Bykova M V, Ermakov D Y, Khromova S A, et al. Stabilized Ni-Based catalysts for bio-oil hydrotreatment: Reactivity studies using guaiacol[J]. Catalysis Today, 2014, 220: 21-31
[44] Khromova S A, Smirnov A A, Bulavchenko O A, et al. Anisole hydrodeoxygenation over Ni-Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity[J]. Applied Catalysis A: General, 2014, 470: 261-270
[45] González-Borja M Á, Resasco D E. Anisole and guaiacol hydrodeoxygenation over monolithic Pt-Sn catalysts[J]. Energy & Fuels, 2011, 25(9): 4 155-4 162
[46] Sun J, Karim A M, Zhang H, et al. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol[J]. Journal of Catalysis, 2013, 306: 47-57
[47] Nie L, Souza P M D, Noronha F B, et al. Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2014: 47-55
[48] Zhu X, Mallinson R G, Resasco D E. Role of transalkylation reactions in the conversion of anisole over HZSM-5[J]. Applied Catalysis A, 2010, 379: 172-181
[49] Zhu X, Nie L, Lobban L L, et al. Efficient conversion of m-cresol to aromatics on a bifunctional Pt/HBeta Catalyst[J]. Energy & Fuels, 2014, 28(6): 4 104-4 111
|