[1] Cabán-Acevedo M, Stone M L, Schmidt J R, et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide[J]. Nature Materials, 2015, 14(12):1245-1251
[2] Chen X, Hu H, Feng Y, et al. MoS2 compounded bidirectionally with TiO2 for hydrogen evolution reaction with enhanced humidity sensing performance[J]. Materials Science in Semiconductor Processing, 2018, 82:75-81
[3] Liu H, Ma X, Hu H, et al. Robust NiCoP/CoP heterostructures for highly efficient hydrogen evolution electrocatalysis in alkaline solution[J]. ACS Applied Materials & Interfaces, 2019, 11(17):15528-15536
[4] Chunduri A, Gupta S, Bapat O, et al. A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting[J]. Applied Catalysis B:Environmental, 2019, doi:10.1016/j.apcatb.2019.118051
[5] Han J, Zhang J, Wang T, et al. Zn doped FeCo layered double hydroxide nanoneedle arrays with partial amorphous phase for efficient oxygen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15):13105-13114
[6] Suen N T, Hung S F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction:Recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2):337-365
[7] Alia S M, Rasimick B, Ngo C, et al. Activity and durability of iridium nanoparticles in the oxygen evolution reaction[J]. Journal of the Electrochemical Society, 2016, 163(11):F3105-F3112
[8] Tian Y, Wang S, Velasco E, et al. A Co-doped nanorod-like RuO2 electrocatalyst with abundant oxygen vacancies for acidic water oxidation[J]. iScience, 2020, doi:10.1016/j.isci.2019.100756
[9] Ma Q, Dong R, Liu H, et al. Prussian blue analogue-derived Mn-Fe oxide nanocubes with controllable crystal structure and crystallinity as highly efficient OER electrocatalysts[J]. Journal of Alloys and Compounds, 2020, doi:10.1016/j.jallcom.2019.153438
[10] El Arrassi A, Liu Z, Evers M V, et al. Intrinsic activity of oxygen evolution catalysts probed at single CoFe2O4 nanoparticles[J]. Journal of the American Chemical Society, 2019, 141(23):9197-9201
[11] Zhang K, Shi M, Wu Y, et al. Constructing FeCoSe2/Co0.85Se heterostructure catalysts for efficient oxygen evolution[J]. Journal of Alloys and Compounds, 2020, doi:10.1016/j.jallcom.2020.154073
[12] Kuai C, Zhang Y, Wu D, et al. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction[J]. ACS Catalysis, 2019, 9(7):6027-6032
[13] Wang X, Zhou L, Yang T, et al. Facile one-step synthesis of tunable nanochain-like Fe-Mo-B:A highly efficient and stable catalyst for oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2020, doi:10.1016/j.jallcom. 2019.153517
[14] Wang J, Yang Z, Zhang M, et al. Vertically stacked bilayer heterostructure CoFe2O4@Ni3S2 on a 3D nickel foam as a high-performance electrocatalyst for the oxygen evolution reaction[J]. New Journal of Chemistry, 2020, 44(4):1455-1462
[15] Ferreira L S, Silva T R, Santos J R D, et al. Structure, magnetic behavior and OER activity of CoFe2O4 powders obtained using agar-agar from red seaweed (Rhodophyta)[J]. Materials Chemistry and Physics, 2019, doi:10.1016/j.matchemphys.2019.121847
[16] Huang Y, Yang W, Yu Y, et al. Ordered mesoporous spinel CoFe2O4 as efficient electrocatalyst for the oxygen evolution reaction[J]. Journal of Electroanalytical Chemistry, 2019, 840:409-414
[17] Guo C, Liu X, Gao L, et al. Oxygen defect engineering in cobalt iron oxide nanosheets for promoted overall water splitting[J]. Journal of Materials Chemistry, 2019, 7(38):21704-21710
[18] Zhu G, Li X, Liu Y, et al. Activating CoFe2O4 electrocatalysts by trace Au for enhanced oxygen evolution activity[J]. Applied Surface Science, 2019, 478:206-212
[19] Urbain F, Du R, Tang P, et al. Upscaling high activity oxygen evolution catalysts based on CoFe2O4 nanoparticles supported on nickel foam for power-to-gas electrochemical conversion with energy efficiencies above 80%[J]. Applied Catalysis B:Environmental, 2019, doi:10.1016/j.apcatb.2019.118055
[20] Lei S, Li Q, Kang Y, et al. Epitaxial growth of oriented Prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction[J]. Applied Catalysis B:Environmental, 2019, 245:1-9
[21] Ding Y, Zhao J, Zhang W, et al. Single-walled carbon nanotubes wrapped CoFe2O4 nanorods with enriched oxygen vacancies for efficient overall water splitting[J]. ACS Applied Energy Materials, 2019, 2(2):1026-1032
[22] Zhu S, Lei J, Qin Y, et al. Spinel oxide CoFe2O4 grown on Ni foam as an efficient electrocatalyst for oxygen evolution reaction[J]. RSC Advances, 2019, 9(23):13269-13274(上接第38页)
[23] 张少峰, 张伟, 刘燕. 起旋器对水平液固循环流化床颗粒分布的影响[J]. 河北工业大学学报, 2009, 38(2):69-73 Zhang Shaofeng, Zhang Wei, Liu Yan. Effects of the spiral flow generator on particles distribution in liquid-solid horizontal circulating fluidized bed[J]. Journal of Hebei University of Technology, 2009, 38(2):69-73(in Chinese)
[24] 巩国栋. 水平多管液固循环流化床颗粒分布性能的实验研究[D]. 天津:河北工业大学, 2007 Gong Guodong. Experimental study on particle distribution performance of horizontal liquid-solid circulating fluidized bed[D]. Tianjin:Hebei University of Technology, 2007(in Chinese)
[25] Monji H, Matsui G, Saito T. Pressure drop reduction of liquid-particles two-phase flow with nearly equal density[J]. Multiphase Flow, 1995, 7(2):355-365
|