[1] Lechkar A, Barroso B A, Blanco G, et al. Methanation of carbon dioxide over ceria-praseodymia promoted Ni-alumina catalysts. Influence of metal loading, promoter composition and alumina modifier[J]. Fuel, 2018, 234:1401-1413
[2] Liang C, Hu X, Wei T, et al. Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals:Impacts of oxygen vacancies on catalytic activity[J]. International Journal of Hydrogen Energy, 2019, 44(16):8197-8213
[3] Marocco P, Morosanu E A, Giglio E, et al. CO2 methanation over Ni/Al hydrotalcite-derived catalyst:Experimental characterization and kinetic study[J]. Fuel, 2018, 225:230-242
[4] Urasaki K, Sekine Y, Kawabe S, et al. Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane[J]. Applied Catalysis A:General, 2005, 286(1):23-29
[5] Hyun Y K, Hyuck M L, Jung-Nam P. Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst:Independent roles of MgO and Pd on CO2 methanation[J]. J. Phys. Chem. C, 2010, 114:7128-7131
[6] Wang F, He S, Chen H, et al. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation[J]. Journal of the American Chemical Society, 2016, 138(19):6298-6305
[7] Trovarelli A, Deleitenburg C, Dolcetti G, et al. CO2 methanation under transient and steady-state conditions over Rh/CeO2 and CeO2-promoted Rh/SiO2:The role of surface and bulk ceria[J]. Journal of Catalysis, 1995, 151(1):111-124
[8] Daroughegi R, Meshkani F, Rezaei M. Enhanced activity of CO2 methanation over mesoporous nanocrystalline Ni-Al2O3 catalysts prepared by ultrasound-assisted co-precipitation method[J]. International Journal of Hydrogen Energy, 2017, 42(22):15115-15125
[9] 张浩, 武媛媛, 胡彤宇, 等. La2O3含量对La-Ni/ZrO2-Al2O3催化剂甲烷化性能的影响[J]. 化学工业与工程, 2018, 35(1):39-44 Zhang Hao, Wu Yuanyuan, Hu Tongyu, et al. Effect of La2O3 addition on catalytic performance of La-Ni/ZrO2-Al2O3 catalyst for syngas methanation[J]. Chemical Industry and Engineering, 2018, 35(1):39-44(in Chinese)
[10] Guo M, Lu G. The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts[J]. Catalysis Communications, 2014, 54:55-60
[11] Song F, Zhong Q, Yu Y, et al. Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method[J]. International Journal of Hydrogen Energy, 2017, 42(7):4174-4183
[12] Takano H, Kirihata Y, Izumiya K, et al. Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation[J]. Applied Surface Science, 2016, 388:653-663
[13] Liu J, Li C, Wang F, et al. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst[J]. Catalysis Science & Technology, 2013, 3(10):2627-2633
[14] Fukuhara C, Hayakawa K, Suzuki Y, et al. A novel nickel-based structured catalyst for CO2 methanation:A honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources[J]. Applied Catalysis A:General, 2017, 532:12-18
[15] Simonetta T, Igor L, Fabio L, et al. Nickel supported on Y2O3-ZrO2 as highly selective and stable CO2 methanation catalyst for in-situ propellant production on Mars[C]//2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), 20-22 June 2018, doi:10.1109/MetroAeroSpace.2018.8453548
[16] Pan Q, Peng J, Sun T, et al. CO2 methanation on Ni/Ce0.5Zr0.5O2 catalysts for the production of synthetic natural gas[J]. Fuel Processing Technology, 2014, 123:166-171
[17] Harshini D, Kwon Y, Han J. Suppression of carbon formation in steam reforming of methane by addition of Co into Ni/ZrO2 catalysts[J]. Korean Journal of Chemical Engineering, 2010, 27(2):480-486
[18] Wang W, Gong J. Methanation of carbon dioxide:An overview[J]. Frontiers of Chemical Science and Engineering, 2011, 5(1):2-10
[19] Roh H S, Koo K Y, Yoon W L. Combined reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts to produce synthesis gas for gas to liquid (GTL) process[J]. Catalysis Today, 2009, 146(1/2):71-75
[20] 李岩峰, 李梅, 柳召刚, 等. 铈锆固溶体掺杂改性的研究进展[J]. 稀土, 2009, 30(5):78-83 Li Yanfeng, Li Mei, Liu Zhaogang. Research progress of doping modification of cerium zirconium solid solution[J]. Rare earth, 2009, 30(5):78-83(in Chinese)
[21] Shao J, Zhang P, Tang X, et al. Effect of preparation method and calcination temperature on low-temperature CO oxidation over Co3O4/CeO2 Catalysts[J]. Chinese Journal of Catalysis, 2007, 28(2):163-169
[22] Liu J, Zhao Z, Xu C, et al. Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis[J]. Chinese Journal of Catalysis, 2019, 40(10):1438-1487
[23] Zhang Q, Li Y, Xu B. Reforming of methane and coalbed methane over nanocomposite Ni/ZrO2 catalyst[J]. Catalysis Today, 2004, 98(4):601-605
[24] Xu B, Wei J, Wang H, et al. Nano-MgO:Novel preparation and application as support of Ni catalyst for CO2 reforming of methane[J]. Catalysis Today, 2001, 68(1/2/3):217-225
[25] Roh H S, Potdar H S, Jun K. Carbon dioxide reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce-ZrO2 catalysts[J]. Catalysis Today, 2004, 93/94/95:39-44
[26] Zhen W, Li B, Lu G, et al. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion[J]. Chemical Communications, 2015, 51(9):1728-1731
[27] Klimova T E, Valencia D, Mendoza-Nieto J A, et al. Behavior of NiMo/SBA-15 catalysts prepared with citric acid in simultaneous hydrodesulfurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene[J]. Journal of Catalysis, 2013, 304:29-46
[28] Wu H, Duan A, Zhao Z, et al. Preparation of NiMo/KIT-6 hydrodesulfurization catalysts with tunable sulfidation and dispersion degrees of active phase by addition of citric acid as chelating agent[J]. Fuel, 2014, 130:203-210
[29] 王伟. 氢等离子还原法制备磷化镍及加氢精制催化性能研究[D]. 辽宁大连:大连理工大学, 2018 Wang Wei. Preparation of nickel phosphides by hydrogen plasma reduction and their catalytic performance in hydrotreatment[D]. Liaoning Dalian:Dalian University of Technology, 2018
[30] 张燕平, 杨春辉, 陈攀, 等. 基于原位生长法的Ni-Ce-LDHs/γ-Al2O3催化剂在CO2甲烷化反应中的活性研究[J]. 山东化工, 2016, 45(13):33-35 Zhang Yanping,Yang Chunhui,Chen Pan,et al. Study on the activity of Ni-Ce-LDHs/γ-Al2O3 catalyst in CO2 methanation reaction based on in situ growth method[J]. Shandong Chemical Industry, 2016, 45(13):33-35(in Chinese)
[31] 张涛, 刘洋,赵凯, 等. 液相还原法制备纳米镍粉[J]. 材料科学与工艺, 2018, 26(6):51-56 Zhang Tao, Liu Yang, Zhao Kai, et al. Preparation of nanometer nickel powder by liquid phase reduction[J]. Materials Science and Technology, 2008, 26(6):51-56(in Chinese)
[32] Kambolis A, Matralis H, Trovarelli A, et al. Ni/CeO2-ZrO2 catalysts for the dry reforming of methane[J]. Applied Catalysis A:General, 2010, 377(1/2):16-26
[33] Nie X, Li W, Jiang X, et al. Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons[J]. Advances in Catalysis, 2019, 65:121-233
[34] Yu Y, Bian Z, Song F, et al. Influence of calcination temperature on activity and selectivity of Ni:CeO2 and Ni:Ce0.8Zr0.2O2 catalysts for CO2 methanation[J]. Topics in Catalysis, 2018, 61(15):1514-1527
[35] Pan Q, Peng J, Sun T, et al. Insight into the reaction route of CO2 methanation:Promotion effect of medium basic sites[J]. Catalysis Communications, 2014, 45:74-78
[36] Tan J, Wang J, Zhang Z, et al. Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO2 for CO2 methanation[J]. Applied Surface Science, 2019, 481:1538-1548
[37] Yan Y, Dai Y, He H, et al. A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation[J]. Applied Catalysis B:Environmental, 2016, 196:108-116
|