[1] 杨东明, 梁相程. CO2绿色利用技术[J]. 当代化工, 2019, 48(8):1838-1841 Yang Dongming, Liang Xiangcheng. Discussion on CO2 green utilization technology[J]. Contemporary Chemical Industry, 2019, 48(8):1838-1841(in Chinese)
[2] Artz J, Mullr T E, Thenert J, et al. Sustainable conversion of carbon dioxide:An integrated review of catalysis and life cycle assessment[J]. Chem Rev, 2018, 118(2):434-450
[3] 范莎莎, 沈辉, 赵玉军, 等. 氧化钙吸附剂的制备及CO2吸附性能[J]. 化学工业与工程, 2016, 33(4):7-10, 22 Fan Shasha, Shen Hui, Zhao Yujun, et al. Preparation and adsorption capacity of calcium-based sorbent[J]. Chemical Industry and Engineering, 2016, 33(4):7-10, 22(in Chinese)
[4] Abdulrasheed A, Jalil A A, Gambo Y, et al. A review on catalyst development for dry reforming of methane to syngas:Recent advances[J]. Renewable and Sustainable Energy Reviews, 2019, 108:175-193
[5] Li J, He Y L, Tan L, et al. Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology[J]. Nature Catalysis, 2018, 1(10):787-793
[6] Bahari M B, Phuc N H H, Alenazey F, et al. Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol[J]. Catalysis Today, 2017, 291:67-75
[7] Aramouni N A K, Touma J G, Tarboush B A, et al. Catalyst design for dry reforming of methane:Analysis review[J]. Renewable and Sustainable Energy Reviews, 2018, 82:2570-2585
[8] Qu F, Wei Y, Cai W, et al. Syngas production from carbon dioxide reforming of ethanol over Ir/Ce0.75Zr0.25O2 catalyst:Effect of calcination temperatures[J]. Energy & Fuels, 2018, 32(2):2104-2116
[9] Zhao S, Cai W, Li Y, et al. Syngas production from ethanol dry reforming over Rh/CeO2 catalyst[J]. J Saudi Chem Soc, 2018, 22(1):58-65
[10] 阮勇哲, 卢遥, 王胜平. 甲烷干重整Ni基催化剂失活及抑制失活研究进展[J]. 化工进展, 2018, 37(10):3850-3857 Ruan Yongzhe, Lu Yao, Wang Shengping. Progress in deactivation and anti-deactivation of nickel-based catalysts for methane dry reforming[J]. Chemical Industry and Engineering Progress, 2018, 37(10):3850-3857(in Chinese)
[11] 曹红霞, 张军, 郭成龙, 等. 三维介孔KIT-6上高分散Ni纳米粒子用于CO甲烷化:助剂对催化性能的影响[J]. 催化学报, 2017, 38(7):1127-1137 Cao Hongxia, Zhang Jun, Guo Chenglong, et al. Highly dispersed Ni nanoparticles on 3D-mesoporous KIT-6 for CO methanation:Effect of promoter species on catalytic performance[J]. Chinese Journal of Catalysis, 2017, 38(7):1127-1137(in Chinese)
[12] Li Z, Miao Z, Wang X, et al. One-Pot synthesis of ZrMo-KIT-6 solid acid catalyst for solvent-free conversion of glycerol to solketal[J]. Fuel, 2018, 233:377-387
[13] Han Y, Wen B, Zhu M, et al. Lanthanum incorporated in MCM-41 and its application as a support for a stable Ni-based methanation catalyst[J]. Journal of Rare Earths, 2018, 36(4):367-373
[14] Mousavi S M, Meshkani F, Rezaei M. Synthesis of nanocrystalline Ce0.95Mn0.05O2 solid solution powders as support for nickel catalyst in dry reforming reaction[J]. Journal of Environmental Chemical Engineering, 2017, 5(6):5493-5500
[15] Zhi G, Guo X, Wang Y, et al. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catalysis Communications, 2011, 16(1):56-59
[16] Li D, Zeng L, Li X, et al. Ceria-Promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation[J]. Applied Catalysis B:Environmental, 2015, 176/177:532-541
[17] Yan X, Hu T, Liu P, et al. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane:Effect of interfacial structure of Ni/CeO2 on SiO2[J]. Applied Catalysis B:Environmental, 2019, 246:221-231
[18] Li M S, van Veen A C. Tuning the catalytic performance of Ni-catalysed dry reforming of methane and carbon deposition via Ni-CeO2-x interaction[J]. Applied Catalysis B:Environmental, 2018, 237:641-648
[19] Cao D, Zeng F, Zhao Z, et al. Cu based catalysts for syngas production from ethanol dry reforming:Effect of oxide supports[J]. Fuel, 2018, 219:406-416
[20] Jankhah S, Abatzoglou N, Gitzhofer F, et al. Catalytic properties of carbon nano-filaments produced by iron-catalysed reforming of ethanol[J]. Chemical Engineering Journal, 2008, 139(3):532-539
[21] Song H, Ozkan U S. Ethanol steam reforming over Co-based catalysts:Role of oxygen mobility[J]. Journal of Catalysis, 2009, 261(1):66-74
|