[1] 侯进, 沈煜, 鲍晓明, 等. 酿酒酵母木糖代谢工程辅酶工程的研究进展[J]. 中国生物工程杂志, 2006, 26(2): 89-94 Hou Jin, Shen Yu, Bao Xiaoming, et al. Research progress in cofactor engineering of xylose metabolism in recombinant Saccharomyces cerevisiae[J]. China Biotechnolgy, 2006, 26 (2): 89-94(in Chinese)
[2] Jin Y S, Lee T H, Choi Y D, et al. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis[J]. Micorbiol Biotechnol, 2000, 10: 564-567
[3] Chiang C, Knight S G. A new pathway of pentose metabolism[J]. Biochem Biophys Res Commun, 1960, 3: 554-559
[4] Rizzi M, Harwart K, Erlemann P, et al. Purification and properties of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis[J]. Journal of Fermentation and Bioengineering, 1989, 67(1): 20-24
[5] Verduyn C, Vankleef R, Frank J, et al. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis [J]. Biochem J, 1985, 226(3): 669-677
[6] Jeffries T W. Engineering yeasts for xylose metabolism[J]. Curr Opin Biotechnol, 2006, 17: 320-326
[7] Karhumaa K, Hahn-Hagerdal B, Grauslund G, et al. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering[J]. Yeast, 2005, 22(5): 359-368
[8] Kuyper M, Toirkens M J, Diderich J A, et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain[J]. FEMS Yeast Res, 2005, 5(10): 925-934
[9] Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund M F. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2009, 2(18):50-55
[10] Jeppsson M, Bengtsson O, Franke K, et al. The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2006, 93(4): 665-673
[11] Watanabe S, Saleh A A, Pack S P, et al. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase[J]. J Biotechnol, 2007, 130(3): 316-319
[12] Matsushika A, Watanabe S, Kodaki T, et al. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 2008, 81(2):243-255
[13] Kuyper M, Hartog M M, Toirkens M J, et al. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation[J]. FEMS Yeast Res, 2005, 5(4/5): 399-409
[14] Jackson B, Peake S J, White S A. Structure and mechanism of proton-translocating transhydrogenase[J]. FEBS Lett, 1999, 464: 1-8
[15] Iwahashi Y, Hitoshio A, Tagima N, et al. Characterization of NADH kinase from Saccharomyces cerevisiae[J]. J Biochem, 1989, 105(4): 588-593
[16] Zhang G, Liu J, Ding W, et al. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase[J]. Appl Environ Microbiol, 2012, 78(4): 1 081-1 086
[17] Gietz R D, Akio S. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites[J]. Gene, 1988, 74(2): 527-534
[18] 张国畅. 利用代谢工程、辅酶工程及酶工程构建重组酿酒酵母木糖利用菌株以生产乙醇的研究[D]. 天津: 天津大学, 2012 Zhang Guochang. Metabolic engineering, cofactor engineering and enzymatic engineering for construction of recombinant xylose-utilizing Saccharomyces cerevisiae strains to produce ethanol[D]. Tianjin: Tianjin University, 2012(in Chinese)
[19] Thomas B J, Rothstein R. The genetic control of direct-repeat recombination in Saccharomyces: The effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene[J]. Genetics, 1989, 123(4): 725-738
[20] van Dijken J P, Scheffers W A. Redox balances in the metabolism of sugars by yeasts[J]. FEMS Microbiol Lett, 1986, 32: 199-224
[21] Verho R, Londesborough J, Penttilä M, et al. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2003, 69(10): 5 892-5 897
[22] Pedersen A, Karlsson G B, Rydstrom J. Proton-Translocating transhydrogenase: An update of unsolved and controversial issues[J]. J Bioenerg Biomembr, 2008, 40(5): 463-473
[23] Bizouarn T, Althage M, Pedersen A, et al. The organization of the membrane domain and its interaction with the NADP(H)-binding site in proton-translocating transhydrogenase from E. Coli[J]. Biochim Biophys Acta, 2002, 1555(1/3): 122-127
[24] Mather O C, Singh A, van Boxel G I, et al. Active-Site conformational changes associated with hydride transfer in proton-translocating transhydrogenase[J]. Biochemistry, 2004, 43(34): 10 952-10 964
|