[1] Yang Y, Cristina O H, Víctor A, et al. Ni2P/SBA-15 as a hydrodeoxygenation catalyst with enhanced selectivity for the conversion of methyl oleate into n-octadecane[J]. Acs Catal, 2012, 2: 592-598
[2] Kubic?ková I, Kubi?ka D. Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: A review[J]. Waste Biomass Valor, 2010, 1: 293-308
[3] Snåre M, Kubi?ková I, Mäki-Arvela P, et al. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel[J]. Ind Eng Chem Res, 2006, 45: 5708-5715
[4] Zuo H, Liu Q, Wang T, et al. Hydrodeoxygenation of methyl palmitate over supported Ni catalysts for diesel-like fuel production[J]. Energy & Fuels, 2012, 26: 3747-3755
[5] Senol O I, Ryymin E M, Viljava T R, et al. Reactions of methyl heptanoate hydrodeoxygenation on sulphided catalysts[J]. J Mol Catal A: Chem, 2007, 268: 1-8
[6] Liu W, He X, Lu C. Researches in the hydrogenation properties of metal nitrides and carbides catalysts[J]. Industrial Catalysis, 2005, 13(3): 1-5
[7] Yang Y, Chen J, Shi H, et al. Deoxygenation of methyl laurate as a model compound to hydrocarbons on Ni2P/SiO2, Ni2P/MCM-41, and Ni2P/SBA-15 catalysts with different dispersions[J]. Energy & Fuels, 2013, 27: 3400-3409
[8] Yang Y, Cristina O H, Patricia P, et al. Synthesis of nickel phosphide nanorods as catalyst for the hydrotreating of methyl oleate[J]. Top Catal, 2012, 55: 991-998
[9] Oyama S T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides[J]. J Catal, 2003, 216: 343-352
[10] Oyama S T, Gott T, Zhao H, et al. Transition metal phosphide hydroprocessing catalysts: A review[J]. Catalysis Today, 2009, 143: 94-107
[11] Li K, Wang R, Chen J, et al. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J]. Energy & Fuels, 2011, 25: 854-863
[12] Chen J, Shi H, Li L, et al. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts[J]. Applied Catalysis B: Environmental, 2014, 144: 870-884
[13] Oyama S T, Lee Y K. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4, 6-DMDBT[J]. J Catal, 2008, 258(2): 393-400
[14] Moula M G, Suzuki S, Chun W J, et al. The first atomic-scale observation of a Ni2P (0001) single crystal surface[J]. Chem Lett, 2006, 35: 90-91
[15] Moula M G, Suzuki S, Chun W J, et al. Surface structures of Ni2P(0001)-Scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) characterizations[J]. Surf Interface Anal, 2006, 38(12/13): 1611-1614
[16] Prins R, Bussell M E. Metal phosphides: Preparation, characterization and catalytic reactivity[J]. Catal Lett, 2012, 142: 1413-1436
[17] Oyama S T, Wang X, Lee Y K, et al. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques[J]. J Catal, 2002, 210: 207-217
[18] Duan X, Yang T, Wang A. Role of sulfur in hydrotreating catalysis over nickel phosphide[J]. J Catal, 2009, 261: 232-240
[19] Yao N, Chen J, Zhang J, et al. Influence of support calcination temperature on properties of Ni/TiO2 for catalytic hydrogenation of o-chloronitro-benzene to o-chloroaniline[J]. Catal Commun, 2008, 9: 1510-1516
[20] Zhang X, Zhang Q, Chen L, et al. Effect of calcination temperature of Ni/SiO2-ZrO2 catalyst on its hydrode oxygenation of guaiacol[J]. Chin J Catal, 2014, 35: 302-309
[21] Lee Y K, Oyama S T. Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating: EXAFS and FTIR studies[J]. J Catal, 2006, 239: 376-389
|