[1] Wang S, Yan S, Ma X, et al. Recent advances in capture of carbon dioxide using alkali-metal-based oxides[J]. Energ Environ Sci, 2011, 4(10): 3 805-3 819
[2] Hsu H C, Shown I, Wei H, et al. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion[J]. Nanoscale, 2013, 5(1): 262-268
[3] Wang Q, Luo J, Zhong Z, et al. CO2 capture by solid adsorbents and their applications: Current status and new trends[J]. Energ Environ Sci, 2011, 4(1): 42-55
[4] An C, Wang J, Jiang W, et al. Strongly visible-light responsive plasmonic shaped AgX:Ag (X=Cl, Br) nanoparticles for reduction of CO2 to methanol[J]. Nanoscale, 2012, 4(18): 5 646-5 650
[5] Liu W, An H, Qin C, et al. Performance enhancement of calcium oxide sorbents for cyclic CO2 capture-A review[J]. Energy & Fuels, 2012, 26(5): 2 751-2 767
[6] Latempa T J, Rani S, Bao N, et al. Generation of fuel from CO2 saturated liquids using a p-Si nanowire‖n-TiO2 nanotube array photo electrochemical cell[J]. Nanoscale, 2012, 4(7): 2 245-2 250
[7] Valverde J M. Ca-Based synthetic materials with enhanced CO2 capture efficiency[J]. J Mater Chem A, 2013, 1(2): 447-468
[8] Martinez I, Grasa G, Murillo R, et al. Evaluation of CO2 carrying capacity of reactivated CaO by hydration[J]. Energy & Fuels, 2011, 25(3): 1 294-1 301
[9] Alonso M, Lorenzo M, González B, et al. Precalcination of CaCO3 as a method to stabilize CaO performance for CO2 capture from combustion gases[J]. Energy & Fuels, 2011, 25(11): 5 521-5 527
[10] Phalak N, Deshpande N, Fan L S. Investigation of high-temperature steam hydration of naturally derived calcium oxide for improved carbon dioxide capture capacity over multiple cycles[J]. Energy & Fuels, 2012, 26(6): 3 903-3 909
[11] 王胜平, 沈辉, 范莎莎, 等. 固体二氧化碳吸附剂研究进展[J]. 化学工业与工程, 2014, 31(1): 72-78 Wang Shengping, Shen Hui, Fan Shasha, et al. Research progress of solid adsorbents for CO2 capture[J]. Chemical Industry and Engineering, 2014, 31(1): 72-78 (in Chinese)
[12] Wang S, Shen H, Fan S, et al. Enhanced CO2 adsorption capacity and stability using CaO-based adsorbents treated by hydration[J]. AIChE Journal, 2013, 59(10): 3 586-3 593
[13] Li Y, Zhao C, Qu C, et al. CO2 capture using CaO modified with ethanol/water solution during cyclic calcination/carbonation[J]. Chemical Engineering & Technology, 2008, 31(2): 237-244
[14] Al-Jeboori M J, Fennell P S, Nguyen M,et al. Effects of different dopants and doping procedures on the reactivity of CaO-based sorbents for CO2 capture[J]. Energy & Fuels, 2012, 26(11): 6 584-6 594
[15] Hu J, Chen M, Fang X, et al. Fabrication and application of inorganic hollow spheres[J]. Chem Soc Rev, 2011, 40(11): 5 472-5 491
[16] Sun X, Li Y. Ga2O3 and GaN semiconductor hollow spheres[J]. Angew Chem Int Ed, 2004, 43(29): 3 827-3 831
[17] Deshmukh A A, Mhlanga S D, Coville N J. Carbon spheres[J]. Mater Sci Eng R-Rep Sep, 2010, 70(1/2): 1-28
[18] Yu J, Yu X, Huang B, et al. Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres[J]. Cryst Growth Des, 2009, 9(3): 1474-1480
[19] Guo C, Hu P, Yu L, et al. Synthesis and characterization of ZrO2 hollow spheres[J]. Mater Lett, 2009, 63(12): 1013-1015
[20] Qian H, Lin G, Zhang Y, et al. A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation[J]. Nanotechnology, 2007, 18(35): 1366-1370
[21] Jia G, Yang M, Song Y,et al. General and facile method to prepare uniform Y2O3:Eu hollow microspheres[J]. Cryst Growth Des, 2008, 9(1): 301-307
|