[1] Lan R, Tao S, Irvine J T S. A direct urea fuel cell-power from fertiliser and waste[J]. Energy and Environmental Science, 2010, 3(4):438-441
[2] Boggs B K, King R L, Botte G G. Urea electrolysis:Direct hydrogen production from urine[J]. Chemical Communications, 2009(32):4859-4861
[3] Tammam R H, Saleh M M. On the electrocatalytic urea oxidation on nickel oxide nanoparticles modified glassy carbon electrode[J]. Journal of Electroanalytical Chemistry, 2017, 794:189-196
[4] Abdel H R M, Medany S S. Enhanced electrocatalytic activity of NiO nanoparticles supported on graphite planes towards urea electro-oxidation in NaOH solution[J]. International Journal of Hydrogen Energy, 2017, 42(38):24117-24130
[5] Vedharathinam V, Botte G G. Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium[J]. Electrochimica Acta, 2012, 81:292-300
[6] Guo F, Ye K, Du M, et al. Electrochemical impedance analysis of urea electro-oxidation mechanism on nickel catalyst in alkaline medium[J]. Electrochimica Acta, 2016, 210:474-482
[7] Vedharathinam V, Botte G G. Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium[J]. Electrochimica Acta, 2013, 108:660-665
[8] Gao X, Wang Y, Li W, et al. Free-Standing Ni-Co alloy nanowire arrays:Efficient and robust catalysts toward urea electro-oxidation[J]. Electrochimica Acta, 2018, 283:1277-1283
[9] Ding R, Li X, Shi W, et al. Mesoporous Ni-P nanocatalysts for alkaline urea electrooxidation[J]. Electrochimica Acta, 2016, 222:455-462
[10] Bian L, Du T, Du Q, et al. Multiwalled carbon nanotubes twined α-nickel hydroxide microspheres as high-efficient urea electrooxidation catalysts[J]. Journal of Applied Electrochemistry, 2017, 47(8):905-915
[11] Wu M, Lin G, Yang R. Hydrothermal growth of vertically-aligned ordered mesoporous nickel oxide nanosheets on three-dimensional nickel framework for electrocatalytic oxidation of urea in alkaline medium[J]. Journal of Power Sources, 2014, 272:711-718
[12] Basumatary P, Konwar D, Yoon Y S. A novel NiCu/ZnO@MWCNT anode employed in urea fuel cell to attain superior performances[J]. Electrochimica Acta, 2018, 261:78-85
[13] Barakat N A M, Alajami M, Al Haj Y, et al. Enhanced onset potential NiMn-decorated activated carbon as effective and applicable anode in urea fuel cells[J]. Catalysis Communications, 2017, 97:32-36
[14] Barakat N A M, Motlak M, Ghouri Z K, et al. Nickel nanoparticles-decorated graphene as highly effective and stable electrocatalyst for urea electrooxidation[J]. Journal of Molecular Catalysis A:Chemical, 2016, 421:83-91
[15] Das G, Tesfaye R M, Won Y, et al. NiO-Fe2O3 based graphene aerogel as urea electrooxidation catalyst[J]. Electrochimica Acta, 2017, 237:171-176
[16] Liang Y, Liu Q, Asiri A M, et al. Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode[J]. Electrochimica Acta, 2015, 153:456-460
[17] Li J, Li X, Huang C, et al. Catalytic activity of Ni-based/graphene aerogel for urea electrooxidation in alkaline solution[J]. Ionics, 2019, 25(4):1943-1951
[18] Daramola D A, Singh D, Botte G G. Dissociation rates of urea in the presence of NiOOH catalyst:A DFT analysis[J]. Journal of Physical Chemistry A, 2010, 114(43):11513-11521
[19] Siwal S S, Thakur S, Zhang Q B, et al. Electrocatalysts for electrooxidation of direct alcohol fuel cell:Chemistry and applications[J]. Materials Today Chemistry, 2019, doi:10.1016/j.mtchem.2019.06.004
[20] Masa J, Sinev I, Mistry H, et al. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution[J]. Advanced Energy Materials, 2017, doi:10.1002/aenm.201700381
[21] Xu B, Liu Y, Tian J, et al. Ni3(BO3)2 as anode material with high capacity and excellent rate performance for sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 363:285-291
[22] Subhan F, Liu B. Acidic sites and deep desulfurization performance of nickel supported mesoporous AlMCM-41 sorbents[J]. Chemical Engineering Journal, 2011, 178:69-77
[23] Subhan F, Aslam S, Yan Z, et al. Confinement of mesopores within ZSM-5 and functionalization with Ni NPs for deep desulfurization[J]. Chemical Engineering Journal, 2018, 354:706-715
[24] Oliveira M C, do Rego A M B. The effect of the hypophosphite ion oxidation on the Ni surface electrode:An XPS study[J]. Journal of Alloys and Compounds, 2006, 425(1/2):64-68
[25] Masa J, Andronescu C, Antoni H, et.al. Role of boron and phosphorus in enhanced electrocatalytic oxygen evolution by nickel borides and nickel phosphides[J]. Chem Electro Chem, 2019, 6:235-240
[26] Okamoto Y, Nitta Y, Imanaka T, et al. Surface characterisation of nickel boride and nickel phosphide catalysts by X-ray photoelectron spectroscopy[J]. Journal of the Chemical Society, Faraday Transactions, 1979, 75:2027-2039
[27] Tyan Y S, Toth L E, Chang Y. Low temperature specific heat study of the electron transfer theory in refractory metal borides[J]. Journal of Physics and Chemistry of Solids, 1969, 30(4):785-792
[28] Kohm A, Merz H. Charge transfer in some transition-metal semiborides[J]. Physica Status Solid B-Basic Solid State Physics, 1974, 61(1):147-152
[29] Greenwood N N, Parish R V, Thornton P. Metal borides[J]. Quarterly Reviews, Chemical Society, 1966, doi:10.1039/QR9662000441
|