[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7 179): 652-657
[2] Neburchilov V, Wang H, Martin J J, et al. A review on air cathodes for zinc-air fuel cells[J]. Journal of Power Sources, 2010, 195(5): 1 271-1 291
[3] Carmo M, Fritz D L, Mergel J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4 901-4 934
[4] Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B: Environmental, 2005, 56(1): 9-35
[5] Suntivich J, Gasteiger H A, Yabuuchi N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011, 3(7): 546-550
[6] Cheng F, Chen J. Metal-Air batteries: From oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6): 2 172-2 192
[7] Chen Z, Higgins D, Yu A, et al. A review on non-precious metal electrocatalysts for PEM fuel cells[J]. Energy & Environmental Science, 2011, 4(9): 3 167-3 192
[8] Gong K, Du F, Xia Z, et al. Nitrogen-Doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5 915): 760-764
[9] Yang Z, Yao Z, Li G, et al. Sulfur-Doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2011, 6(1): 205-211
[10] Sheng Z, Gao H, Bao W, et al. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells[J]. Journal of Materials Chemistry, 2012, 22(2): 390-395
[11] Liu Z, Peng F, Wang H, et al. Phosphorus-Doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angewandte Chemie International Edition, 2011, 50(14): 3 257-3 261
[12] Choi C H, Park S H, Woo S I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity[J]. ACS Nano, 2012, 6(8): 7 084-7 091
[13] Sakaushi K, Fellinger T P, Antonietti M. Bifunctional metal-free catalysis of mesoporous noble carbons for oxygen reduction and evolution reactions[J]. Chem Sus Chem, 2015, 8(7): 1 156-1 160
[14] Zhang J, Zhao Z, Xia Z, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology, 2015, 10: 444-452
[15] Chaudhari K N, Song M Y, Yu J S. Transforming hair into heteroatom-doped carbon with high surface area[J]. Small, 2014, 10(13): 2 625-2 636
[16] Zhang Z, Li H, Yang Y, et al. Cow dung-derived nitrogen-doped carbon as a cost effective, high activity, oxygen reduction electrocatalyst[J]. RSC Advances, 2015, 5(34): 27 112-27 119
[17] Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications [M]. Second edition, New York: Wiley, 2001
[18] Skála R, Drábek M. The crystal structure of Co2P from X-ray powder diffraction data and its mineralogical applications[J]. Bulletin of Geosciences, 2001, 76(4): 209-216
[19] Yu D, Zhang Q, Dai L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction[J]. Journal of the American Chemical Society, 2010, 132(43): 15 127-15 129
[20] Rao C V, Cabrera C R, Ishikawa Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction[J]. The Journal of Physical Chemistry Letters, 2010, 1(18): 2 622-2 627
[21] Ding W, Wei Z, Chen S, et al. Space-Confinement-induced synthesis of pyridinic-and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angewandte Chemie International Edition, 2013, 52(45): 11 755-11 759
[22] Li M, Zhang L, Xu Q, et al. N-Doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations[J]. Journal of Catalysis, 2014, 314: 66-72
|