[1] Ruppert A M, Weinberg K, Palkovits R. Hydrogenolysis goes bio:From carbohydrates and sugar alcohols to platform chemicals[J]. Angewandte Chemie International Edition in English, 2012, 51(11):2564-2601
[2] Besson M, Gallezot P, Pinel C. Conversion of biomass into chemicals over metal catalysts[J]. Chemical Reviews, 2014, 114(3):1827-1870
[3] Feng J, Xiong W, Jia Y, et al. Hydrogenation of ethyl lactate over ruthenium catalysts in an additive-free catalytic system[J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104(1):89-97
[4] Luo G, Yan S, Qiao M, et al. Effect of promoters on the structures and properties of the RuB/γ-Al2O3 catalyst[J]. Journal of Molecular Catalysis A:Chemical, 2005, 230(1/2):69-77
[5] Luo G, Yan S, Qiao M, et al. Effect of tin on Ru-B/γ-Al2O3 catalyst for the hydrogenation of ethyl lactate to 1,2-propanediol[J]. Applied Catalysis A:General, 2004, 275(1/2):95-102
[6] Joseyphusa R J, Matsumotob T, Takahashi H, et al. Designed synthesis of cobalt and its alloys by polyol process[J]. Journal of Solid State Chemistry, 2007, 180(11):3008-3018
[7] Osorio-Cantillo C, Santiago-Miranda A N, Perales-Perez O, et al. Size-and phase-controlled synthesis of cobalt nanoparticles for potential biomedical applications[J]. Journal of Applied Physics, 2012, 111(7):2532-2595
[8] Yang J, Liu Q, Sun W. Co(Ⅱ)-doped MOF-5 nano/microcrystals:Solvatochromic behaviour, sensing solvent molecules and gas sorption property[J]. Journal of Solid State Chemistry, 2014, 218:50-55
[9] 龚晓钟, 汤皎宁, 李均钦, 等. 微波法制备金属钴纳米晶棒及其表征[J]. 应用化学, 2005, 22(12):1291-1294 Gong Xiaozhong, Tang Jiaoning, Li Junqin, et al. Preparation of cobalt nanocrystals rods by microwave method and characterization[J]. Applied Chemistry, 2005, 22(12):1291-1294(in Chinese)
[10] Xue J, Cui F, Huang Z, et al. Liquid phase hydrogenolysis of biomass-derived lactate to 1,2-propanediol over silica supported cobalt nanocatalyst[J]. Chinese Journal of Chemistry, 2011, 29(7):1319-1325
[11] Ma X, Sun D, Zhao F, et al. Liquid phase hydrogenation of biomass-derived ethyl lactate to propane-1,2-diol over a highly active CoB amorphous catalyst[J]. Catalysis Communications, 2015, 60:124-128
[12] Liu Q, Cao X, Wang T, et al. Synthesis of shape-controllable cobalt nanoparticles and their shape-dependent performance in glycerol hydrogenolysis[J]. RSC Advances, 2015, 5(7):4861-4871
[13] Xie X, Shen W. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance[J]. Nanoscale, 2009, 1(1):50-60
[14] Xie X, Li Y, Liu Z, et al. Low-Temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458(7239):746-749
[15] Wang W, Lin H, Chen Y. Carbon monoxide hydrogenation on cobalt/zeolite catalysts[J]. Journal of Porous Materials, 2005, 12(1):5-12
[16] Khodakov A Y, Lynch J, Bazin D, et al. Reducibility of cobalt species in silica-supported Fischer-Tropsch catalysts[J]. Journal of Catalysis, 1997, 168(1):16-25
[17] Shi L, Zeng C, Lin Q, et al. Citric acid assisted one-step synthesis of highly dispersed metallic Co/SiO2 without further reduction:As-Prepared Co/SiO2 catalysts for Fischer-Tropsch synthesis[J]. Catalysis Today, 2014, 228:206-211
[18] Bulavchenko O A, Cherepanova S V, Malakhov V V, et al. In situ XRD study of nanocrystalline cobalt oxide reduction[J]. Kinetics and Catalysis, 2009, 50(2):192-198
[19] Potoczna-Petru D, Kepinski L. Reduction study of Co3O4 model catalyst by electron microscopy[J]. Catalysis Letters, 2001, 73(1):41-46
[20] Huang L, Zhu Y, Zheng H, et al. Vapor-Phase hydrogenolysis of biomass-derived lactate to 1,2-propanediol over supported metal catalysts[J]. Applied Catalysis A:General, 2008, 349(1/2):204-211
[21] Ducreux O, Rebours B, Lynch J, et al. Microstructure of supported cobalt Fischer-Tropsch catalysts[J]. Oil & Gas Science and Technology, 2008, 64(1):49-62
[22] Xue J, Fang C, Huang W, et al. Effect of metal additives on structure and properties of a Co/SiO2 hydrogenation catalyst[J]. Chinese Journal of Catalysis, 2012, 33(9/10):1642-1649
|