[1] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3):587-603
[2] Yu H, Zhou H. High-Energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries[J]. Journal of Physical Chemistry Letters, 2013, 4(8):1268-1280
[3] 田建华,李向军,位辰先,等. LiFePO4/C复合材料的制备和性能[J]. 化学工业与工程, 2007, 24(1):1-4 Tian Jianhua, Li Xiangjun, Wei Chenxian, et al. Preparation and performance of LiFePO4/C composites[J]. Chemical Industry and Engineering, 2007, 24(1):1-4(in Chinese)
[4] Thackeray M M, Johnson C S, Vaughey J T, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2005, 15(23):2257-2267
[5] 苏银利,王丹,陈丽,等. ZrO2包覆富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2[J]. 化学工业与工程, 2015, 32(4):30-33 Su Yinli, Wang Dan, Chen Li, et al. Modification of ZrO2-coated Li[Li0.2Ni0.2Mn0.6]O2[J]. Chemical Industry and Engineering, 2015, 32(4):30-33(in Chinese)
[6] Zheng J, Gu M, Xiao J, et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process[J]. Nano Letters, 2013, 13(8):3824-3830
[7] Zheng J, Wu X, Yang Y. A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery[J]. Electrochimica Acta, 2011, 56(8):3071-3078
[8] Li L, Xu M, Chen Z, et al. High-Performance lithium-rich layered oxide materials:Effects of chelating agents on microstructure and electrochemical properties[J]. Electrochimica Acta, 2015, 174:446-455
[9] Wang F, Li M S, Lu Y P, et al. A simple sol-gel technique for preparing hydroxyapatite nanopowders[J]. Materials Letters, 2005, 59(8/9):916-919
[10] Ren W, Zhao Y, Hu X, et al. Preparation-Microstructure-Performance relationship of Li-rich transition metal oxides microspheres as cathode materials for lithium ion batteries[J]. Electrochimica Acta, 2016, 191:491-499
[11] 赖德聪. 过锂三元复合材料作为锂电池正极材料的研究[D]. 重庆:重庆大学,2010 Lai Decong. Synthesis and characterization of Li-rich triplets compound cathodes for lithium ion batteries[D]. Chongqing:Chongqing University, 2010(in Chinese)
[12] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-Stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30):3112-3125
[13] Gong Z, Liu H, Guo X, et al. Effects of preparation methods of LiNi0.8Co0.2O2 cathode materials on their morphology and electrochemical performance[J]. Journal of Power Sources, 2004, 136(1):139-144
[14] Wu F, Wang Z, Su Y, et al. Synthesis and characterization of hollow spherical cathode Li1.2Mn0.54Ni0.13Co0.13O2 assembled with nanostructured particles via homogeneous precipitation-hydrothermal synthesis[J]. Journal of Power Sources, 2014, 267:337-346
[15] Predoana L, Jitianu A, Voicescu M, et al. Study of formation of LiCoO2 using a modified Pechini aqueous sol-gel process[J]. Journal of Sol-Gel Science and Technology, 2015, 74(2):406-418
[16] 唐天洪. 前躯体溶胶液陈化时间与钙磷比对Bioglass@CNF结构演变及生物学性能影响机制的研究[D]. 北京:北京化工大学,2015 Tang Tianhong. The influence of aging time and CA/P ratio of precursor solution on structure evolution and biological properties of bioglass@CNF[D]. Beijing:Beijing University of Chemical Technology, 2015(in Chinese)
[17] Cheng D, Xie R, Tang T, et al. Regulating micro-structure and biomineralization of electrospun PVP-based hybridized carbon nanofibers containing bioglass nanoparticles via aging time[J]. RSC Advances, 2016, 6(5):3870-3881
[18] Zheng J, Gu M, Genc A, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution[J]. Nano Letters, 2014, 14(5):2628-2635
|