[1] Vieno N M, Härkki H, Tuhkanen T, et al. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant[J]. Environmental Science & Technology, 2007, 41(14):5077-5084
[2] Zwiener C. Oxidative treatment of pharmaceuticals in water[J]. Water Research, 2000, 34(6):1881-1885
[3] Kansal S, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts[J]. Journal of Hazardous Materials, 2007, 141(3):581-590
[4] Ahmed S, Rasul M G, Martens W N, et al. Heterogeneous photocatalytic degradation of phenols in wastewater:A review on current status and developments[J]. Desalination, 2010, 261(1/2):3-18
[5] Bi J, Wu L, Li J, et al. Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies[J]. Acta Materialia, 2007, 55(14):4699-4705
[6] Zhang L, Xu T, Zhao X, et al. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J]. Applied Catalysis B:Environmental, 2010, 98(3/4):138-146
[7] He R, Cao S, Zhou P, et al. Recent advances in visible light Bi-based photocatalysts[J]. Chinese Journal of Catalysis, 2014, 35(7):989-1007
[8] Cheng H, Huang B, Dai Y. Engineering BiOX (X=Cl, Br, I) nanostructures for highly efficient photocatalytic applications[J]. Nanoscale, 2014, doi:10.1039/c3nr05529a
[9] Zhao X, Qu J, Liu H, et al. Photoelectrochemical degradation of anti-inflammatory pharmaceuticals at Bi2MoO6-boron-doped diamond hybrid electrode under visible light irradiation[J]. Applied Catalysis B:Environmental, 2009, 91(1/2):539-545
[10] Wang S, Ding X, Zhang X, et al. In situ carbon homogeneous doping on ultrathin bismuth molybdate:A dual-purpose strategy for efficient molecular oxygen activation[J]. Advanced Functional Materials, 2017, doi:10.1002/adfm.201703923
[11] Meng X, Zhang Z. Pd-doped Bi2MoO6 plasmonic photocatalysts with enhanced visible light photocatalytic performance[J]. Applied Surface Science, 2017, 392:169-180
[12] Cai J, Huang J, Lai Y. 3D Au-decorated Bi2MoO6 nanosheet/TiO2 nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity[J]. Journal of Materials Chemistry A, 2017, 5(31):16412-16421
[13] Tian G, Chen Y, Zhai R, et al. Hierarchical flake-like Bi2MoO6/TiO2 bilayer films for visible-light-induced self-cleaning applications[J]. Journal of Materials Chemistry A, 2013, doi:10.1039/C3TA10511C
[14] Lim S, Shen W, Gao Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1):362-381
[15] Li X, Rui M, Song J, et al. Carbon and graphene quantum dots for optoelectronic and energy devices:A review[J]. Advanced Functional Materials, 2015, 25(31):4929-4947
[16] Georgieva J, Valova E, Armyanov S, et al. Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours:A short review with emphasis to TiO2-WO3 photoanodes[J]. Journal of Hazardous Materials, 2012, 211/212:30-46
[17] Ding Z, Hu X, Yue P, et al. Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition[J]. Catalysis Today, 2001, 68(1/2/3):173-182
[18] Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property[J]. Dalton Transactions, 2012, doi:10.1039/C2DT30985H
[19] Liu J, Xu H, Xu Y, et al. Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity[J]. Applied Catalysis B:Environmental, 2017, 207:429-437
[20] Bai X, Wang L, Zong R, et al. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization[J]. Langmuir, 2013, 29(9):3097-3105
[21] Li H, Hu T, Zhang R, et al. Preparation of solid-state Z-scheme Bi2MoO6/MO(M:Cu, Co3/4, or Ni) heterojunctions with internal electric field-improved performance in photocatalysis[J]. Applied Catalysis B:Environmental, 2016, 188:313-323
[22] Tian L, Min S, Wang F. Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution[J]. Applied Catalysis B:Environmental, 2019, doi:10.1016/j.apcatb.2019.118029
|