[1] Manthiram A, Fu Y, Chung S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23):11751-11787
[2] Bruce P G, Hardwick L J, Abraham K M. Lithium-Air and lithium-sulfur batteries[J]. MRS Bulletin, 2011, 36(7):506-512
[3] Yin Y, Xin S, Guo Y, et al. Lithium-Sulfur batteries:Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50):13186-13200
[4] Cao D, Jiao Y, Cai Q, et al. Stable lithium-sulfur full cells enabled by dual functional and interconnected mesocarbon arrays[J]. Journal of Materials Chemistry A, 2019, 7(7):3289-3297
[5] Chen Y, Abbas S A, Kaisar N, et al. Mitigating metal dendrite formation in lithium-sulfur batteries via morphology-tunable graphene oxide interfaces[J]. ACS Applied Materials & Interfaces, 2019, 11(2):2060-2070
[6] Liu S, Li J, Yan X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2018, doi:10.1002/adma.201706895
[7] Huang J, Zhuang T, Zhang Q, et al. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries[J]. ACS Nano, 2015, 9(3):3002-3011
[8] Zhou G, Pei S, Li L, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(4):625-631
[9] Chen L, Yang W W, Liu J G, et al. Decorating CoSe2 hollow nanospheres on reduced graphene oxide as advanced sulfur host material for performance enhanced lithium-sulfur batteries[J]. Nano Research, 2019, 12(11):2743-2748
[10] Li Z, Yuan L, Yi Z, et al. A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries[J]. Nanoscale, 2014, 6(3):1653-1660
[11] Barghamadi M, Best A S, Bhatt A I, et al. Effect of LiNO3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium-sulfur battery[J]. Journal of Power Sources, 2015, 295:212-220
[12] Ding N, Zhou L, Zhou C, et al. Building better lithium-sulfur batteries:From LiNO3 to solid oxide catalyst[J]. Scientific Reports, 2016, doi:10.1038/srep33154
[13] Ebadi M, Lacey M J, Brandell D, et al. Density functional theory modeling the interfacial chemistry of the LiNO3 additive for lithium-sulfur batteries by means of simulated photoelectron spectroscopy[J]. The Journal of Physical Chemistry C, 2017, 121(42):23324-23332
[14] Yan C, Cheng X, Tian Y, et al. Lithium metal anodes:Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition[J]. Advanced Materials, 2018, doi:10.1002/adma. 201870181
[15] Pei F, Fu A, Ye W, et al. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries[J]. ACS Nano, 2019, 13(7):8337-8346
[16] Paolella A, Demers H, Chevallier P, et al. A platinum nanolayer on lithium metal as an interfacial barrier to shuttle effect in Li-S batteries[J]. Journal of Power Sources, 2019, 427:201-206
[17] Zhou Y, Zhou C, Li Q, et al. Enabling prominent high-rate and cycle performances in one lithium-sulfur battery:designing permselective gateways for Li+ transportation in holey-CNT/S cathodes[J]. Advanced Materials, 2015, 27(25):3774-3781
[18] Zhang J, Shi Y, Ding Y, et al. In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium-sulfur battery[J]. Nano Letters, 2016, 16(11):7276-7281
[19] Zhang J, Shi Y, Ding Y, et al. A conductive molecular framework derived Li2S/N, P-codoped carbon cathode for advanced lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, doi:10.1002/aenm.201602876
[20] Pang Q, Tang J, Huang H, et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@Cellulose for advanced lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(39):6021-6028
[21] Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015, doi:10.1038/ncomms6682
[22] Li G, Sun J, Hou W, et al. Three-Dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries[J]. Nature Communications, 2016, doi:10.1038/ncomms10601
[23] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6):500-506
[24] Gu H, Zhang R, Wang P, et al. Construction of three-dimensional ordered porous carbon bulk networks for high performance lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2019, 533:445-451
[25] Wu R, Chen S, Deng J, et al. Hierarchically porous nitrogen-doped carbon as cathode for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2018, 27(6):1661-1667
[26] Wu Z, Wang W, Wang Y, et al. Three-Dimensional graphene hollow spheres with high sulfur loading for high-performance lithium-sulfur batteries[J]. Electrochimica Acta, 2017, 224:527-533
[27] Zhang P, Yue W, Li R. Uniform yolk-shell Fe3O4@nitrogen-doped carbon composites with superior electrochemical performance for lithium-ion batteries[J]. Electrochimica Acta, 2018, 282:595-601
[28] Tao X, Wang J, Ying Z, et al. Strong sulfur binding with conducting magnéli-phase TinO2n-1 Nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters, 2014, 14(9):5288-5294
[29] Xiao L, Cao Y, Xiao J, et al. A soft approach to encapsulate sulfur:polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Advanced Materials, 2012, 24(9):1176-1181
[30] He G, Evers S, Liang X, et al. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes[J]. ACS Nano, 2013, 7(12):10920-10930
[31] Ahn J H, Shin H J, Abbas S, et al. Plasma-Functionalized carbon-layered separators for improved performance of lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(8):3772-3782
[32] Li X, Sun X. Interface design and development of coating materials in lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(30):1801323
[33] Jeong Y C, Kim J H, Nam S, et al. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries[J]. Advanced Functional Materials, 2018, doi:10.1002/adfm.201707411
[34] Georgakilas V, Tiwari J N, Kemp K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9):5464-5519
[35] Karousis N, Suarez-Martinez I, Ewels C P, et al. Structure, properties, functionalization, and applications of carbon nanohorns[J]. Chemical Reviews, 2016, 116(8):4850-4883
[36] 梁彤祥, 刘娟, 王晨. 石墨烯的电子结构及其应用进展[J]. 材料工程, 2014, 42(6):89-96 Liang Tongxiang, Liu Juan, Wang Chen. Electronic structure of graphene and its application advances[J]. Journal of Materials Engineering, 2014, 42(6):89-96(in Chinese)
[37] Zeng Q, Leng X, Wu K, et al. Electroactive cellulose-supported graphene oxide interlayers for Li-S batteries[J]. Carbon, 2015, 93:611-619
[38] Deng H, Yao L, Huang Q, et al. Highly improved electrochemical performance of Li-S batteries with heavily nitrogen-doped three-dimensional porous graphene interlayers[J]. Materials Research Bulletin, 2016, 84:218-224
[39] Xing L, Xi K, Li Q, et al. Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 303:22-28
[40] Chong W, Xiao F, Yao S, et al. Nitrogen-Doped graphene fiber webs for multi-battery energy storage[J]. Nanoscale, 2019, 11(13):6334-6342
[41] Wang X, Wang Z, Chen L. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium-sulfur battery[J]. Journal of Power Sources, 2013, 242:65-69
[42] Li H, Sun L, Zhang Y, et al. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer[J]. Journal of Energy Chemistry, 2017, 26(6):1276-1281
[43] Huang J, Xu Z, Abouali S, et al. Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries[J]. Carbon, 2016, 99:624-632
[44] Wang L, He Y, Shen L, et al. Ultra-Small self-discharge and stable lithium-sulfur batteries achieved by synergetic effects of multicomponent sandwich-type composite interlayer[J]. Nano Energy, 2018, 50:367-375
[45] Zhang Z, Wang G, Lai Y, et al. A freestanding hollow carbon nanofiber/reduced graphene oxide interlayer for high-performance lithium-sulfur batteries[J]. Journal of Alloys.and Compounds, 2016, 663:501-506
[46] Fan C, Li H, Zhang L, et al. Fabrication of functionalized polysulfide reservoirs from large graphene sheets to improve the electrochemical performance of lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics, 2015, 17(36):23481-23488
[47] Chai L, Wang J, Wang H, et al. Porous carbonized graphene-embedded fungus film as an interlayer for superior Li-S batteries[J]. Nano Energy, 2015, 17:224-232
[48] Guo Y, Zhao G, Wu N, et al. Efficient synthesis of graphene nanoscrolls for fabricating sulfur-loaded cathode and flexible hybrid interlayer toward high-performance Li-S batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(50):34185-34193
[49] Li C, Dong S, Guo D, et al. Ternary NiO/RGO-Sn hybrid flexible freestanding film as interlayer for lithium-sulfur batteries with improved performance[J]. Electrochimica Acta, 2017, 251:43-50
[50] Guo Y, Zhang Y, Zhang Y, et al. Interwoven V2O5 nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(40):19358-19370
[51] Song H, Zuo C, Xu X, et al. A thin TiO2 NTs/GO hybrid membrane applied as an interlayer for lithium-sulfur batteries[J]. RSC Advances, 2018, 8(1):429-434
[52] Yue X, Li X, Meng J K, et al. Padding molybdenum net with Graphite/MoO3 composite as a multi-functional interlayer enabling high-performance lithium-sulfur batteries[J]. Journal of Power Sources, 2018, 397:150-156
[53] Yi R, Liu C, Zhao Y, et al. A light-weight free-standing graphene foam-based interlayer towards improved Li-S cells[J]. Electrochimica Acta, 2019, 299:479-488
[54] Yin L, Dou H, Wang A, et al. A functional interlayer as a polysulfides blocking layer for high-performance lithium-sulfur batteries[J]. New Journal of Chemistry, 2018, 42(2):1431-1436
|