[1] 秦豪杰, 申方. 掺氢氨发动机的燃烧理论研究[J]. 河南科技, 2017(1): 137-140 QIN Haojie, SHEN Fang. Theoretical study on combustion of hydrogen-ammonia engine[J]. Journal of Henan Science and Technology, 2017(1): 137-140(in Chinese) [2] 郭朋彦, 申方, 王丽君, 等. 氨燃料发动机研究现状及发展趋势[J]. 车用发动机, 2016(3): 1-5, 13 GUO Pengyan, SHEN Fang, WANG Lijun, et al. Research status and development trend for ammonia-fueled engines[J]. Vehicle Engine, 2016(3): 1-5, 13(in Chinese) [3] 周上坤, 杨文俊, 谭厚章, 等. 氨燃烧研究进展[J]. 中国电机工程学报, 2021, 41(12): 4164-4181 ZHOU Shangkun, YANG Wenjun, TAN Houzhang, et al. Research progress of ammonia combustion[J]. Proceedings of the CSEE, 2021, 41(12): 4164-4181 (in Chinese) [4] VALERA-MEDINA A, MARSH R, RUNYON J, et al. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation[J]. Applied Energy, 2017, 185: 1362-1371 [5] KOBAYASHI H, HAYAKAWA A, SOMARATHNE K D K A, et al. Science and technology of ammonia combustion [J]. Proceedings of the Combustion Institute, 2019, 37(1): 109-133 [6] KONNOV A A, DE RUYCK J. Kinetic modeling of the thermal decomposition of ammonia[J]. Combustion Science and Technology, 2000, 152(1): 23-37 [7] KONNOV A A. Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism[J]. Combustion and Flame, 2009, 156(11): 2093-2105 [8] 陈铮. 氨气预混火焰NO生成特性实验与模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020 CHEN Zheng. Experiment and simulation of NO generation characteristics in ammonia premixed flame[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese) [9] KASKAN W E, HUGHES D E. Mechanism of decay of ammonia in flame gases from an NH3/O2 flame[J]. Combustion and Flame, 1973, 20(3): 381-388 [10] FISHER C J. A study of rich ammonia/oxygen/nitrogen flames[J]. Combustion and Flame, 1977, 30: 143-149 [11] MILLER J A, BOWMAN C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Progress in Energy and Combustion Science, 1989, 15(4): 287-338 [12] LINDSTEDT R P, LOCKWOOD F C, SELIM M A. A detailed kinetic study of ammonia oxidation[J]. Combustion Science and Technology, 1995, 108(4/5/6): 231-254 [13] DUYNSLAEGHER C, CONTINO F, VANDOOREN J, et al. Modeling of ammonia combustion at low pressure[J]. Combustion and Flame, 2012, 159(9): 2799-2805 [14] NOZARI H, KARABEYOǦLU A. Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms[J]. Fuel, 2015, 159: 223-233 [15] SONG Y, HASHEMI H, CHRISTENSEN J M, et al. Ammonia oxidation at high pressure and intermediate temperatures[J]. Fuel, 2016, 181: 358-365 [16] HAYAKAWA A, GOTO T, MIMOTO R, et al. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures[J]. Fuel, 2015, 159: 98-106 [17] TAKIZAWA K, TAKAHASHI A, TOKUHASHI K, et al. Burning velocity measurements of nitrogen-containing compounds[J]. Journal of Hazardous Materials, 2008, 155(1/2): 144-152 [18] PFAHL U J, ROSS M C, SHEPHERD J E, et al. Flammability limits, ignition energy, and flame speeds in H2-CH4-NH3-N2O-O2-N2 mixtures[J]. Combustion and Flame, 2000, 123(1/2): 140-158 [19] ZAKAZNOV V F, KURSHEVA L A, FEDINA Z I. Determination of normal flame velocity and critical diameter of flame extinction in ammonia-air mixture[J]. Combustion, Explosion and Shock Waves, 1978, 14(6): 710-713 [20] RONNEY P D. Effect of chemistry and transport properties on near-limit flames at microgravity[J]. Combustion Science and Technology, 1988, 59(1/2/3): 123-141 [21] JABBOUR T, CLODIC D F. Burning velocity and refrigerant flammability classification[J]. ASHRAE Transactions, 2004, 110(2): 523-533 [22] ICHIKAWA A, HAYAKAWA A, KITAGAWA Y, et al. Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9570-9578 [23] LI J, HUANG H, KOBAYASHI N, et al. Study on using hydrogen and ammonia as fuels: Combustion characteristics and NOx formation[J]. International Journal of Energy Research, 2014, 38(9): 1214-1223 [24] HAN X, WANG Z, COSTA M, et al. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames[J]. Combustion and Flame, 2019, 206: 214-226 [25] JOO J M, LEE S, KWON O C. Effects of ammonia substitution on combustion stability limits and NOx emissions of premixed hydrogen-air flames[J]. International Journal of Hydrogen Energy, 2012, 37(8): 6933-6941 [26] RYU K, ZACHARAKIS-JUTZ G E, KONG S. Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation[J]. International Journal of Hydrogen Energy, 2014, 39(5): 2390-2398 [27] LI J, HUANG H, KOBAYASHI N, et al. Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition[J]. Energy, 2017, 126: 796-809 [28] MϕRCH C S, BJERRE A, GϕTTRUP M P, et al. Ammonia/hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system[J]. Fuel, 2011, 90(2): 854-864 [29] BARBAS M, COSTA M, VRANCKX S, et al. Experimental and chemical kinetic study of CO and NO formation in oxy-methane premixed laminar flames doped with NH3[J]. Combustion and Flame, 2015, 162(4): 1294-1303 [30] 朱雨涵, 程斌, 张丰, 等. 氨气/丙烷混合燃烧及 NOx 生成特性研究[C]//第十一届全国能源与热工学术年会论文集, 2021 ZHU Yuhan, CHENG Bin, ZHANG Feng, et al. Experimental study on ammonia/propane co-combustion NOx emission characteristic[C]//Proceedings of the 11th Conference on Energy and Thermal Engineering, 2021(in Chinese) [31] 周梅, 楚育纯, 王兆林, 等. 氨-丙烷混合燃料降碳燃烧的排放特性[J]. 燃烧科学与技术, 2020, 26(3)257-264 ZHOU Mei, CHU Yuchun, WANG Zhaolin, et al. Emission characteristics of NH3-C3H8-air mixture for carbon reduction combustion[J]. Journal of Combustion Science and Technology, 2020, 26(3)257-264(in Chinese) [32] LEE J H, KIM J H, PARK J H, et al. Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1054-1064 [33] LINDSTEDT R P, LOCKWOOD F C, SELIM M A. Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation[J]. Combustion Science and Technology, 1994, 99(4/5/6): 253-276 [34] KUMAR P, MEYER T R. Experimental and modeling study of chemical-kinetics mechanisms for H2-NH3-air mixtures in laminar premixed jet flames[J]. Fuel, 2013, 108: 166-176 [35] JÓJKA J, S'LEFARSKI R. Dimensionally reduced modeling of nitric oxide formation for premixed methane-air flames with ammonia content[J]. Fuel, 2018, 217: 98-105 [36] XIAO H, VALERA-MEDINA A, BOWEN P J. Study on premixed combustion characteristics of co-firing ammonia/methane fuels[J]. Energy, 2017, 140: 125-135 [37] 张君. NH3/CH4燃烧室燃烧特性及污染物排放研究[D]. 辽宁大连: 大连海事大学, 2019 ZHANG Jun. Study on combustion characteristics and pollutant emission of NH3/CH4 combustion chamber[D]. Liaoning Dalian: Dalian Maritime University, 2019(in Chinese) [38] ZHANG J, ITO T, ISHII H, et al. Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: Effect of ammonia co-firing ratio[J]. Fuel, 2020, 267: 117166 [39] 钟绍华, 万桂芹, 严利群. 氨燃料燃烧性能数值模拟与分析[J]. 内燃机工程, 2014, 35(3): 46-51 ZHONG Shaohua, WAN Guiqin, YAN Liqun. Numerical simulation and analysis of ammonia fuel combustion characteristics[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(3): 46-51(in Chinese) [40] 阿俊利. 氨燃料燃烧过程数值模拟研究[D]. 郑州: 华北水利水电大学, 2018 A Junli. Numerical simulation of combustion process of ammonia fuel[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2018(in Chinese) [41] XIAO H, LAI S, VALERA-MEDINA A, et al. Experimental and modeling study on ignition delay of ammonia/methane fuels[J]. International Journal of Energy Research, 2020, 44(8): 6939-6949 [42] 陈彦泽. 氨气富氧预混燃烧实验与机理分析[D]. 哈尔滨: 哈尔滨工业大学, 2021 CHEN Yanze. Experiment and mechanism analysis of oxygen-enriched premixed combustion of ammonia gas[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese) [43] 赵岩. 微型HCCI自由活塞动力装置内实现低温燃烧方式的研究[D]. 江苏镇江: 江苏大学,2019 ZHAO Yan. Study on low temperature combustion mode in miniature HCCI free piston power plant[D]. Jiangsu Zhenjiang: Jiangsu University, 2019(in Chinese) [44] 周上坤, 杨文俊, 崔保崇, 等. 氨燃烧污染物特性的实验研究及动力学分析[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 121-129 ZHOU Shangkun, YANG Wenjun, CUI Baochong, et al. Experimental study and kinetic analysis on pollutant characteristics of ammonia combustion[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 121-129(in Chinese) [45] 陈达南, 李军, 邓立生, 等. 多孔燃烧器中氨/空气燃烧特性数值研究[J]. 新能源进展, 2021, 9(4): 294-299 CHEN Danan, LI Jun, DENG Lisheng, et al. Numerical study on ammonia/air combustion characteristics in a porous burner[J]. Advances in New and Renewable Enengy, 2021, 9(4): 294-299(in Chinese) [46] NOZARI H, KARACA G, TUNCER O, et al. Porous medium based burner for efficient and clean combustion of ammonia-hydrogen-air systems[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14775-14785 [47] XIAO S, ZHANG Y, LU Q, et al. Numerical simulation and emission analysis of ammonia/oxygen premixed combustion process in micro-combustor with baffle[J]. Chemical Engineering and Processing-Process Intensification, 2022, 174: 108871 [48] XIAO H, VALERA-MEDINA A, MARSH R, et al. Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions[J]. Fuel, 2017, 196: 344-351 [49] MILLER J A, SMOOKE M D, GREEN R M, et al. Kinetic modeling of the oxidation of ammonia in flames[J]. Combustion Science and Technology, 1983, 34(1/2/3/4/5/6): 149-176 [50] SAFER M, TABET F, OUADHA A, et al. A numerical investigation of structure and emissions of oxygen-enriched syngas flame in counter-flow configuration[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2890-2898 [51] 苏嘉明, 李先春, 李艳鹰, 等. 稀薄氨气的燃烧特性及动力学研究[J]. 可再生能源, 2021, 39(1): 13-18 SU Jiaming, LI Xianchun, LI Yanying, et al. Study on combustion characteristics and kinetics of lean ammonia[J]. Renewable Energy Resources, 2021, 39(1): 13-18(in Chinese) [52] 赵黛青, 冯耀勋, 刘庆才, 等. 燃料稀释对富氧空气/甲烷扩散火焰中氮氧化物生成的影响[J]. 热能动力工程, 2004, 19(4): 367-371, 420 ZHAO Daiqing, FENG Y aoxun, LIU Qingcai, et al. Impact of fuel dilution on the formation of NOx in an oxygen-rich air/methane diffusion flame[J]. Journal of Engineering for Thermal Energy and Power, 2004, 19(4): 367-371, 420(in Chinese) [53] 黄章俊, 唐志峰, 田红, 等. N2和CO2稀释对氢气-空气湍流扩散燃烧及NO生成特性的影响[J]. 动力工程学报, 2021, 41(11): 933-941 HUANG Zhangjun, TANG Zhifeng, TIAN Hong, et al. Effect of N2 and CO2 dilution on hydrogen-air turbulent diffusion combustion and NO formation characteristics[J]. Journal of Chinese Society of Power Engineering, 2021, 41(11): 933-941(in Chinese) [54] 金台, 王旭江, 罗开红, 等. 高强度湍流预混火焰NO生成特性的研究[J]. 工程热物理学报, 2018, 39(9): 2056-2061 JIN Tai, WANG Xujiang, LUO Kaihong, et al. Effects of intense turbulence on NO formation in propagating planar premixed flame[J]. Journal of Engineering Thermophysics, 2018, 39(9): 2056-2061(in Chinese) [55] HAYAKAWA A, GOTO T, MIMOTO R, et al. NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures[J]. Mechanical Engineering Journal, 2015, 2(1): 14-402 [56] LI S, ZHANG S, ZHOU H, et al. Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors[J]. Fuel, 2019, 237: 50-59 [57] 高正平, 涂安琪, 李天新, 等. 面向零碳电力的氨燃烧技术研究进展[J]. 洁净煤技术, 2022, 28(3): 173-184 GAO Zhengping, TU Anqi, LI Tianxin, et al. Recent advances on ammonia combustion technology for zero-carbon power[J]. Clean Coal Technology, 2022, 28(3): 173-184(in Chinese) [58] REITER A J, KONG S. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J]. Fuel, 2011, 90(1): 87-97 [59] KURATA O, IKI N, MATSUNUMA T, et al. Performances and emission characteristics of NH3-air and NH3CH4-air combustion gas-turbine power generations[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3351-3359 [60] KELLER M, KOSHI M, OTOMO J, et al. Thermodynamic evaluation of an ammonia-fueled combined-cycle gas turbine process operated under fuel-rich conditions[J]. Energy, 2020, 194: 116894 [61] OKAFOR E C, SOMARATHNE K D A, HAYAKAWA A, et al. Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4597-4606 [62] OKAFOR E C, SOMARATHNE K D A, RATTHANAN R, et al. Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia[J]. Combustion and Flame, 2020, 211: 406-416 [63] SORRENTINO G, SABIA P, BOZZA P, et al. Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions[J]. Applied Energy, 2019, 254: 113676 [64] 毛晨林, 王平, Prashant Shrotriya, 等. 含氨燃料预混火焰的层流火焰速度及NO排放特性[J]. 化工学报, 2021, 72(10): 5330-5343 MAO Chenlin, WANG Ping, SHROTRIYA P, et al. Laminar flame speed and NO emission characteristics of premixed flames with different ammonia-containing fuels[J]. CIESC Journal, 2021, 72(10): 5330-5343(in Chinese) [65] YAMAMOTO A, KIMOTO M, OZAWA Y, et al. Basic co-firing characteristics of ammonia with pulverized coal in a single burner test furn: 2018 AIChE Annual Meeting [C]//Proceedings of AIChE, 2018 [66] ISHII H, OHNO E, KOZAKI T, et al. Co-firing method of pulverized coal and ammonia for suppressing the NOx generation[C]//The Proceedings of the National Symposium on Power and Energy Systems, Japan:The Japan Society of Mechanical Engineers, 2018 [67] 王一坤, 邓磊, 王涛, 等. 大比例掺烧NH3对燃煤机组影响分析[J]. 洁净煤技术, 2022, 28(3): 185-192 WANG Yikun, DENG Lei, WANG Tao, et al. Influence of large scale coupled NH3 power generation on coal-fired units[J]. Clean Coal Technology, 2022, 28(3): 185-192(in Chinese) [68] 陆成宽. 我国成功研发燃煤锅炉混氨燃烧技术[N]. 科技日报, 2022-01-25
|