[1] 范秀英, 张微, 韩圣慧. 我国汽车尾气污染状况及其控制对策分析[J]. 环境科学, 1999, 20(5):102-108 Fan Xiuying, Zhang Wei, Han Shenghui. Vehicle pollution situation and its control in China[J]. Chinese Journal of Enviromental Science, 1999, 20(5):102-108(in Chinese)
[2] 王建昕. 汽车排气污染治理及催化转化器[M]. 北京:化学工业出版社, 2000
[3] Kreuzer T, Lox E S, Lindner D, et al. Advanced exhaust gas aftertreatment systems for gasoline and diesel fuelled vehicles[J]. Catalysis Today, 1996, 29(1/2/3/4):17-27
[4] Heck R M, Farrauto R J. Automobile exhaust catalysts[J]. Applied Catalysis A:General, 2001, 221(1/2):443-457
[5] Shinjoh H, Takahashi N, Yokota K, et al. Effect of periodic operation over Pt catalysts in simulated oxidizing exhaust gas[J]. Applied Catalysis B:Environmental, 1998, 15(3/4):189-201
[6] Sedlmair C. Elementary steps of NOx adsorption and surface reaction on a commercial storage-reduction catalyst[J]. Journal of Catalysis, 2003, 214(2):308-316
[7] 潘广宏, 孟明. 稀燃汽车尾气中氮氧化物的催化消除技术[J]. 化学工业与工程, 2011, 28(3):67-73 Pan Guanghong, Meng Ming. Technology for the catalytic removal of nitrogen oxides in the lean-burn exhaust of vehicles[J]. Chemical Industry and Engineering, 2011, 28(3):67-73(in Chinese)
[8] Kim C H, Qi G, Dahlberg K, et al. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust[J]. Science, 2010, 327(5973):1624-1627
[9] He X, Meng M, He J, et al. A potential substitution of noble metal Pt by perovskite LaCoO3 in ZrTiO4 supported lean-burn NOx trap catalysts[J]. Catalysis Communications, 2010, 12(3):165-168
[10] 范丰奇, 孟明. 焙烧温度对CuO/K2CO3/TiO2催化剂NOx储存还原性能的影响[J]. 化学工业与工程, 2017, 34(2):55-61 Fan Fengqi, Meng Ming. Effect of calcination temperature on the catalytic performance of non-platinic lean NOx trap catalyst CuO-K2CO3/TiO2[J]. Chemical Industry and Engineering, 2017, 34(2):55-61(in Chinese)
[11] 张成伍, 丁彤, 查宇清, 等. 锰负载量对NSR催化剂Mn-K2CO3/γ-Al2O3催化性能的影响[J]. 化学工业与工程, 2018, 35(2):9-15 Zhang Chengwu, Ding Tong, Zha Yuqing, et al. Effect of manganese loading on catalytic performance of Mn-K2CO3/γ-Al2O3 catalysts for NSR[J]. Chemical Industry and Engineering, 2018, 35(2):9-15(in Chinese)
[12] Milt V G, Peralta M A, Ulla M A, et al. Soot oxidation on a catalytic NOx trap:Beneficial effect of the Ba-K interaction on the sulfated Ba, K/CeO2 catalyst[J]. Catalysis Communications, 2007, 8(5):765-769
[13] Luo J, Gao F, Kim D H, et al. Effects of potassium loading and thermal aging on K/Pt/Al2O3 high-temperature lean NOx trap catalysts[J]. Catalysis Today, 2014, 231:164-172
[14] Zhang Y, Meng M, Dai F, et al. States and function of potassium carbonate species in the polytitanate nanobelt supported catalysts used for efficient NO<i>x storage and reduction[J]. The Journal of Physical Chemistry C, 2013, 117(45):23691-23700
[15] Xian H, Zhang X, Li X, et al. BaFeO 3-x Perovskite:An efficient NOx absorber with a high sulfur tolerance[J]. The Journal of Physical Chemistry C, 2010, 114(27):11844-11852
[16] Li X, Dong Y, Xian H, et al. De-NO<i>x in alternative lean/rich atmospheres on La1-xSrxCoO3 perovskites[J]. Energy & Environmental Science, 2011, 4(9):3351-3354
[17] Chen S, Wang H, Liu Y. Perovskite La-St-Fe-O (St=Ca, Sr) supported nickel catalysts for steam reforming of ethanol:The effect of the A site substitution[J]. International Journal of Hydrogen Energy, 2009, 34(19):7995-8005
[18] Epling W S, Peden C H F, Szanyi J. Carbonate formation and stability on a Pt/BaO/γ-Al2O3 NOx storage/reduction catalyst[J]. The Journal of Physical Chemistry C, 2008, 112(29):10952-10959
[19] Hodjati S, Petit C, Pitchon V, et al. Absorption/Desorption of NOx process on perovskites:Nature and stability of the species formed on BaSnO3[J]. Applied Catalysis B:Environmental, 2000, 27(2):117-126
[20] Merino N A, Barbero B P, Grange P, et al. La1-xCaxCoO3 perovskite-type oxides:Preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane[J]. Journal of Catalysis, 2005, 231(1):232-244
|