[1] AL-GHOUTI M A, AL-KAABI M A, ASHFAQ M Y, et al. Produced water characteristics, treatment and reuse:A review[J]. Journal of Water Process Engineering, 2019, 28:222-239 [2] KUSWORO T D, ARYANTI N, UTOMO D P. Oilfield produced water treatment to clean water using integrated activated carbon-bentonite adsorbent and double stages membrane process[J]. Chemical Engineering Journal, 2018, 347:462-471 [3] 贺明睿. 基于反应表面偏析制备持久高性能超滤膜[D]. 天津:天津大学,2019 HE Mingrui. Preparation of durable high performance ultrafiltration membrane based on reactive surface segregation[D]. Tianjin:Tianjin University, 2019(in Chinese) [4] XUE Z, CAO Y, LIU N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A, 2014, 2(8):2445-2460 [5] FAKHRU'L-RAZI A, PENDASHTEH A, ABDULLAH L C, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials, 2009, 170(2/3):530-551 [6] ABUHASEL K, KCHAOU M, ALQURAISH M, et al. Oily wastewater treatment:Overview of conventional and modern methods, challenges, and future opportunities[J]. Water, 2021, 13(7):980 [7] PADAKI M, SURYA MURALI R, ABDULLAH M S, et al. Membrane technology enhancement in oil-water separation. A review[J]. Desalination, 2015, 357:197-207 [8] 孟凡宁, 宋菁, 张新妙, 等. 超润湿性油水分离膜的研究进展[J]. 化工环保, 2019, 39(4)373-380 MENG Fanning, SONG Jing, ZHANG Xinmiao, et al. Research progress of membranes with super wettability for oil-water separation[J]. Environmental Protection of Chemical Industry, 2019, 39(4)373-380(in Chinese) [9] 景境, 刘战剑, 张曦光, 等. 超浸润油水分离膜及其研究进展[J]. 表面技术, 2023, 52(2):172-182, 224 JING Jing, LIU Zhanjian, ZHANG Xiguang, et al. Research progress of superwetting oil-water separation membrane[J]. Surface Technology, 2023, 52(2):172-182, 224(in Chinese) [10] ROBINSON J. Solvent flux through dense polymeric nanofiltration membranes[J]. Journal of Membrane Science, 2004, 230(1/2):29-37 [11] YUE X, LI Z, ZHANG T, et al. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications[J]. Chemical Engineering Journal, 2019, 364:292-309 [12] WANG X, YU J, SUN G, et al. Electrospun nanofibrous materials:A versatile medium for effective oil/water separation[J]. Materials Today, 2016, 19(7):403-414 [13] SU R, LI S, WU W, et al. Recent progress in electrospun nanofibrous membranes for oil/water separation[J]. Separation and Purification Technology, 2021, 256:117790 [14] SI Y, FU Q, WANG X, et al. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions[J]. ACS Nano, 2015, 9(4):3791-3799 [15] ZANG L, ZHENG S, WANG L, et al. Zwitterionic nanogels modified nanofibrous membrane for efficient oil/water separation[J]. Journal of Membrane Science, 2020, 612:118379 [16] LV Y, DING Y, WANG J, et al. Carbonaceous microsphere/nanofiber composite superhydrophilic membrane with enhanced anti-adhesion property towards oil and anionic surfactant:Membrane fabrication and applications[J]. Separation and Purification Technology, 2020, 235:116189 [17] HONG S, BAE S, JEON H, et al. An underwater superoleophobic nanofibrous cellulosic membrane for oil/water separation with high separation flux and high chemical stability[J]. Nanoscale, 2018, 10(6):3037-3045 [18] WANG J, DING M, CHENG X, et al. Hierarchically porous membranes with isolated-round-pores connected by narrow-nanopores:A novel solution for trade-off effect in separation[J]. Journal of Membrane Science, 2020, 604:118040 [19] DENG Y, WU Y, CHEN G, et al. Metal-organic framework membranes:Recent development in the synthesis strategies and their application in oil-water separation[J]. Chemical Engineering Journal, 2021, 405:127004 [20] LI Z, LIU Y, LI L, et al. Ultra-thin titanium carbide (Mxene) sheet membranes for high-efficient oil/water emulsions separation[J]. Journal of Membrane Science, 2019, 592:117361 [21] LIU Y, SU, GUAN J, et al. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation[J]. Advanced Functional Materials, 2018, 28(13):1706545 [22] LIU Y, ZHOU J, ZHU E, et al. Covalently intercalated graphene oxide for oil-water separation[J]. Carbon, 2015, 82:264-272 [23] HUANG T, ZHANG L, CHEN H, et al. Sol-gel fabrication of a non-laminated graphene oxide membrane for oil/water separation[J]. Journal of Materials Chemistry A, 2015, 3(38):19517-19524 [24] WEI Y, QI H, GONG X, et al. Specially wettable membranes for oil-water separation[J]. Advanced Materials Interfaces, 2018, 5(23):1800576 [25] THEBO K H, QIAN X, ZHANG Q, et al. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nature Communications, 2018, 9(1):1-8 [26] HAN X, GUO Z. Graphene and its derivative composite materials with special wettability:Potential application in oil-water separation[J]. Carbon, 2021, 172:647-681 [27] LIU Y, COPPENS M O. Cell membrane-inspired graphene nanomesh membrane for fast separation of oil-in-water emulsions (adv. funct. mater. 31/2022)[J]. Advanced Functional Materials, 2022, 32(31):2270179 [28] JOSHI R K, ALWARAPPAN S, YOSHIMURA M, et al. Graphene oxide:The new membrane material[J]. Applied Materials Today, 2015, 1(1):1-12 [29] HUANG H, SONG Z, WEI N, et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes[J]. Nature Communications, 2013, 4(1):1-9 [30] LIU G, JIN W, XU N. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15):5016-5030 [31] GAO P, LIU Z, SUN D, et al. The efficient separation of surfactant-stabilized oil-water emulsions with a flexible and superhydrophilic graphene-TiO2 composite membrane[J]. Journal of Materials Chemistry A, 2014, 2(34):14082-14088 [32] PENG Y, YU Z, LI F, et al. A novel reduced graphene oxide-based composite membrane prepared via a facile deposition method for multifunctional applications:Oil/water separation and cationic dyes removal[J]. Separation and Purification Technology, 2018, 200:130-140 [33] SUN J, BI H, SU S, et al. One-step preparation of GO/SiO2 membrane for highly efficient separation of oil-in-water emulsion[J]. Journal of Membrane Science, 2018, 553:131-138 [34] HU X, YU Y, ZHOU J, et al. The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane[J]. Journal of Membrane Science, 2015, 476:200-204 [35] BAO Z, CHEN D, LI N, et al. Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation[J]. Journal of Membrane Science, 2020, 598:117804 [36] LIU Y, TU W, CHEN M, et al. A mussel-induced method to fabricate reduced graphene oxide/halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation[J]. Chemical Engineering Journal, 2018, 336:263-277 [37] ZHAN Y, HE S, WAN X, et al. Thermally and chemically stable poly(arylene ether nitrile)/halloysite nanotubes intercalated graphene oxide nanofibrous composite membranes for highly efficient oil/water emulsion separation in harsh environment[J]. Journal of Membrane Science, 2018, 567:76-88 [38] SHAO L, YU Z, LI X, et al. One-step preparation of sepiolite/graphene oxide membrane for multifunctional oil-in-water emulsions separation[J]. Applied Clay Science, 2019, 181:105208 [39] ZHAO X, SU Y, LIU Y, et al. Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation[J]. ACS Applied Materials & Interfaces, 2016, 8(12):8247-8256 [40] SHI Y, HUANG J, ZENG G, et al. Evaluation of self-cleaning performance of the modified g-C3N4 and GO based PVDF membrane toward oil-in-water separation under visible-light[J]. Chemosphere, 2019, 230:40-50 [41] LIU Y, GUAN J, SU Y, et al. Graphene oxide membranes with an ultra-large interlayer distance through vertically grown covalent organic framework nanosheets[J]. Journal of Materials Chemistry A, 2019, 7(44):25458-25466 [42] LIU Y, ZHANG F, ZHU W, et al. A multifunctional hierarchical porous SiO2/GO membrane for high efficiency oil/water separation and dye removal[J]. Carbon, 2020, 160:88-97 [43] HAN N, ZHANG W, WANG W, et al. Amphiphilic cellulose for enhancing the antifouling and separation performances of poly (acrylonitrile-co-methyl acrylate) ultrafiltration membrane[J]. Journal of Membrane Science, 2019, 591:117276 [44] HE M, ZHANG R, ZHANG K, et al. Reduced graphene oxide aerogel membranes fabricated through hydrogen bond mediation for highly efficient oil/water separation[J]. Journal of Materials Chemistry A, 2019, 7(18):11468-11477 [45] ZHANG S, JIANG G, GAO S, et al. Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation[J]. ACS Nano, 2018, 12(1):795-803 [46] ZHANG R, LIU Y, HE M, et al. Antifouling membranes for sustainable water purification:Strategies and mechanisms[J]. Chemical Society Reviews, 2016, 45(21):5888-5924 [47] 王菲. 非均相水凝胶膜仿生制备及油水分离性能强化[D]. 天津:天津大学,2020 WANG Fei. Biomimetic preparation of heterogeneous hydrogel membrane and enhancement of oil-water separation performance[D]. Tianjin:Tianjin University, 2020(in Chinese) [48] CHEN S, LI L, ZHAO C, et al. Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23):5283-5293 [49] MOLINO P J, YANG D, PENNA M, et al. Hydration layer structure of biofouling-resistant nanoparticles[J]. ACS Nano, 2018, 12(11):11610-11624 [50] KOC J, SCHÖNEMANN E, AMUTHALINGAM A, et al. Low-fouling thin hydrogel coatings made of photo-cross-linked polyzwitterions[J]. Langmuir, 2019, 35(5):1552-1562 [51] LONG M, YANG C, YOU X, et al. Electrostatic enhanced surface segregation approach to self-cleaning and antifouling membranes for efficient molecular separation[J]. Journal of Membrane Science, 2021, 638:119689 [52] YANG H, LIAO K, HUANG H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation[J]. Journal of Materials Chemistry A, 2014, 2(26):10225-10230 [53] 杨皓程. 基于聚多巴胺/聚乙烯亚胺共沉积技术的聚合物膜表界面工程[D]. 杭州:浙江大学,2017 YANG Haocheng. Surface interface engineering of polymer film based on polydopamine/polyethylenimine Co-deposition technology[D]. Hangzhou:Zhejiang University,2017(in Chinese) [54] NAYAK K, KUMAR A, TRIPATHI B P. Molecular grafting and zwitterionization based antifouling and underwater superoleophobic PVDF membranes for oil/water separation[J]. Journal of Membrane Science, 2022, 643:120038 [55] ZHU Y, WANG J, ZHANG F, et al. Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation[J]. Advanced Functional Materials, 2018, 28(40):1804121 [56] DONG D, ZHU Y, FANG W, et al. Double-defense design of super-anti-fouling membranes for oil/water emulsion separation[J]. Advanced Functional Materials, 2022, 32(24):2113247 [57] MO Y, ZHANG F, DONG H, et al. Ultrasmall Cu3(PO4)2 nanoparticles reinforced hydrogel membrane for super-antifouling oil/water emulsion separation[J]. ACS Nano, 2022, 16(12):20786-20795 [58] TUTEJA A, CHOI W, MA M, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856):1618-1622 [59] BRADY R F, SINGER I L. Mechanical factors favoring release from fouling release coatings[J]. Biofouling, 2000, 15(1/2/3):73-81 [60] BRADY R F. Properties which influence marine fouling resistance in polymers containing silicon and fluorine[J]. Progress in Organic Coatings, 1999, 35(1/2/3/4):31-35 [61] WANG F, HE M, SU Y, et al. In situ construction of chemically heterogeneous hydrogel surfaces toward near-zero-flux-decline membranes for oil-water separation[J]. Journal of Membrane Science, 2020, 594:117455 [62] YANG C, LONG M, DING C, et al. Antifouling graphene oxide membranes for oil-water separation via hydrophobic chain engineering[J]. Nature Communications, 2022, 13:7334 [63] MA Z, SHU G, LU X. Preparation of an antifouling and easy cleaning membrane based on amphiphobic fluorine island structure and chemical cleaning responsiveness[J]. Journal of Membrane Science, 2020, 611:118403 [64] MA R, LU X, ZHANG S, et al. Constructing discontinuous silicon-island structure with low surface energy based on the responsiveness of hydrophilic layers to improve the anti-fouling property of membranes[J]. Journal of Membrane Science, 2022, 659:120770 [65] HU J, ZHAN Y, ZHANG G, et al. Durable and super-hydrophilic/underwater super-oleophobic two-dimensional MXene composite lamellar membrane with photocatalytic self-cleaning property for efficient oil/water separation in harsh environments[J]. Journal of Membrane Science, 2021, 637:119627 [66] CAI Y, CHEN D, LI N, et al. A self-cleaning heterostructured membrane for efficient oil-in-water emulsion separation with stable flux[J]. Advanced Materials, 2020, 32(25):2001265
|