[1] FERNÁNDEZ-IRIARTE A, AMATO F, MORENO N, et al. Chemistry and sources of PM2.5 and volatile organic compounds breathed inside urban commuting and tourist buses[J]. Atmospheric Environment, 2020, doi:10.1016/j.atmosenv.2019.117234
[2] 周杰, 宋小三, 王三反. 高浓度含铜电镀废水膜电解处理与回用[J]. 化工进展, 2021, 40(S2):434-442 ZHOU Jie, SONG Xiaosan, WANG Sanfan. Recovery and utilization of copper from electroplating wastewater with high concentration by membrane electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(S2):434-442(in Chinese)
[3] 薛宇, 华一新, 汝娟坚, 等. 低共熔溶剂中电解分离铜镍合金[J]. 有色金属工程, 2021, 11(9):75-79 XUE Yu, HUA Yixin, RU Juanjian, et al. Electrolytic separation of copper-nickel alloy in deep eutectic solvent[J]. Nonferrous Metals Engineering, 2021, 11(9):75-79(in Chinese)
[4] 马尚文, 底梦飞, 杨嵘晟, 等. 双脂肪酸憎水性低共熔溶剂的合成及富集水中铜离子的研究[J]. 煤炭与化工, 2020, 43(6):121-128 MA Shangwen, DI Mengfei, YANG Rongsheng, et al. Study on extraction of aqueous copper ion using deep eutectic solvent made of two fatty acid components[J]. Coal and Chemical Industry, 2020, 43(6):121-128(in Chinese)
[5] HANSEN B B, SPITTLE S, CHEN B, et al. Deep eutectic solvents:A review of fundamentals and applications[J]. Chemical Reviews, 2021, 121(3):1232-1285
[6] 岳旭东, 袁冰, 朱国强, 等. 低共熔溶剂在有机合成和萃取分离中的应用进展[J]. 化工进展, 2018, 37(7):2627-2634 YUE Xudong, YUAN Bing, ZHU Guoqiang, et al. Development in the applications of deep eutectic solvents in organic synthesis and extraction separation[J]. Chemical Industry and Engineering Progress, 2018, 37(7):2627-2634(in Chinese)
[7] 白芳, 华超, 李静, 等. 低共熔溶剂在萃取/萃取蒸馏分离中的研究进展[J]. 现代化工, 2017, 37(2):20-24 BAI Fang, HUA Chao, LI Jing, et al. Research progress of deep eutectic solvents in extraction/extraction distillation separation[J]. Modern Chemical Industry, 2017, 37(2):20-24(in Chinese)
[8] 成洪业, 漆志文. 低共熔溶剂用于萃取分离的研究进展[J]. 化工进展, 2020, 39(12):4896-4907 CHENG Hongye, QI Zhiwen. Research progress of deep eutectic solvent for extractive separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12):4896-4907(in Chinese)
[9] 冯树波, 马尚文, 宋弥新, 等. 憎水性低共熔溶剂的合成及在萃取分离领域中的应用研究进展[J]. 化学研究与应用, 2020, 32(2):177-186 FENG Shubo, MA Shangwen, SONG Mixin, et al. Advances in the synthesis of hydrophobic deep eutectic solvents and their applications in the field of extractions and separations[J]. Chemical Research and Application, 2020, 32(2):177-186(in Chinese)
[10] ARCON D P, FRANCO F C Jr. All-fatty acid hydrophobic deep eutectic solvents towards a simple and efficient microextraction method of toxic industrial dyes[J]. Journal of Molecular Liquids, 2020, doi:10.1016/j.molliq.2020.114220
[11] CHEN Q, WANG L, REN G, et al. A fatty acid solvent of switchable miscibility[J]. Journal of Colloid and Interface Science, 2017, 504:645-651
[12] LU Y, LI R, MANICA R, et al. Enhancing oil-solid and oil-water separation in heavy oil recovery by CO2-responsive surfactants[J]. AIChE Journal, 2021, doi:10.1002/aic.17033
[13] 陈倩倩. 基于脂肪酸的开关型溶剂和乳液体系的构建[D]. 济南:山东大学, 2019 CHEN Qianqian. Fabrication of switchable solvents and emulsions based on fatty acids[D]. Jinan:Shandong University, 2019 (in Chinese)
[14] ISMAIL M, AL-ZUHAIR S. Thermo-responsive switchable solvents for simultaneous microalgae cell disruption, oil extraction-reaction, and product separation for biodiesel production[J]. Biocatalysis and Agricultural Biotechnology, 2020, doi:10.1016/j.bcab.2020.101667
[15] YOOK S D, KIM J, WOO H M, et al. Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents[J]. Renewable Energy, 2019, 132:61-67
[16] GALIWANGO E, ISMAIL M, AHMAD M S, et al. Effect of thermo-responsive switchable solvents on microalgae cells' disruption and non-isothermal combustion kinetics[J]. Biomass Conversion and Biorefinery, 2022, 12(8):3275-3288
[17] LIU Y, QIU Z, ZHONG H, et al. Nitrogen-containing switchable solvents for separation of hydrocarbons and their derivatives[J]. RSC Advances, 2020, 10(22):12953-12961
[18] JIANG B, ZHANG Y, HUANG X D, et al. Tailoring CO2-responsive polymers and nanohybrids for green chemistry and processes[J]. Industrial & Engineering Chemistry Research, 2019, 58(33):15088-15108
[19] SED G, CICCI A, JESSOP P G, et al. A novel switchable-hydrophilicity, natural deep eutectic solvent (NaDES)-based system for bio-safe biorefinery[J]. RSC Advances, 2018, 8(65):37092-37097
[20] CAI C, WANG Y, YU W, et al. Temperature-responsive deep eutectic solvents as green and recyclable media for the efficient extraction of polysaccharides from Ganoderma lucidum[J]. Journal of Cleaner Production, 2020, doi:10.1016/j.jclepro.2020.123047
[21] LONGERAS O, GAUTIER A, BALLERAT-BUSSEROLLES K, et al. Deep eutectic solvent with thermo-switchable hydrophobicity[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33):12516-12520
[22] JAFARI P, JOUYBAN A. Partitioning behavior of caffeine, lamotrigine, clonazepam and oxcarbazepine in a biodegradable aqueous two-phase system comprising of polyethylene glycol dimethyl ether 250 and choline chloride/saccharose deep eutectic solvent[J]. Journal of Molecular Liquids, 2021, doi:10.1016/j.molliq.2020.115055
[23] LIU F, XUE Z, LAN X, et al. CO2 switchable deep eutectic solvents for reversible emulsion phase separation[J]. Chemical Communications (Cambridge, England), 2021, 57(5):627-630
[24] MOZHDEHEI A, HOSSEINPOUR N, BAHRAMIAN A. Dimethylcyclohexylamine switchable solvent interactions with asphaltenes toward viscosity reduction and in situ upgrading of heavy oils[J]. Energy & Fuels, 2019, 33(9):8403-8412
[25] ZHANG Z, TU Y, YU H, et al. Preparation and application of CO2-triggered switchable solvents in separation of toluene/n-heptane[J]. Langmuir, 2020, 36(2):510-519
[26] WANG J, DU Y, DU C, et al. Physicochemical properties of switchable-hydrophilicity solvent systems:N,N-dimethylcyclohexylamine, water and carbon dioxide[J]. The Journal of Chemical Thermodynamics, 2019, 133:1-9
[27] LI Y, CHANG H, YAN H, et al. Reversible absorption of volatile organic compounds by switchable-hydrophilicity solvents:A case study of toluene with N,N-dimethylcyclohexylamine[J]. ACS Omega, 2021, 6(1):253-264
[28] CARRERA M, GÓMEZ-DÍAZ D, NAVAZA J M. Switchable hydrophilicity solvents for carbon dioxide chemical absorption[J]. Journal of Industrial and Engineering Chemistry, 2018, 59:304-309
[29] LI X, WANG L, LU H, et al. Homogeneous extraction for sustainable separation of emulsified oily wastewater by using CO2 switchable solution[J]. Separation and Purification Technology, 2021, doi:10.1016/j.seppur.2020.117566
[30] HAN S, RAGHUVANSHI K, ABOLHASANI M. Accelerated material-efficient investigation of switchable hydrophilicity solvents for energy-efficient solvent recovery[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8):3347-3356
[31] CUNNINGHAM M F, JESSOP P G. Carbon dioxide-switchable polymers:Where are the future opportunities?[J]. Macromolecules, 2019, 52(18):6801-6816
|