[1] 张国荣. 连续结晶在医药工业中的应用[J]. 山东化工, 2016, 45(3):82-84 ZHANG Guorong. Application of continuous crystallization in pharmaceutical industry[J]. Shandong Chemical Industry, 2016, 45(3):82-84(in Chinese) [2] 姜爽, 王莹, 秦宇佳, 等. 农药生产中的工业结晶技术[J]. 农药, 2016, 55(12):864-866, 933 JIANG Shuang, WANG Ying, QIN Yujia, et al. Industrial crystallization technology in agrochemical industry[J]. Agrochemicals, 2016, 55(12):864-866, 933(in Chinese) [3] 吴思俊, 龙之祥, 彭祖仁, 等. 过程分析技术在结晶过程中的应用研究进展[J]. 分析测试学报, 2020, 39(10):1209-1217 WU Sijun, LONG Zhixiang, PENG Zuren, et al. Progress on application of process analytical technology in crystallization process[J]. Journal of Instrumental Analysis, 2020, 39(10):1209-1217(in Chinese) [4] HSU C W, WARD J D. The best objective function for seeded batch crystallization[J]. AIChE Journal, 2013, 59(2):390-398 [5] 文婷, 王海蓉, 黄唯, 等. 结晶过程晶体粒度分布控制研究进展[J]. 化学工业与工程, 2021, 38(4):44-55 WEN Ting, WANG Hairong, HUANG Wei, et al. Research progress on controlling of crystal size distribution(CSD)in crystallization process[J]. Chemical Industry and Engineering, 2021, 38(4):44-55(in Chinese) [6] NAGY Z K, BRAATZ R D. Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis[J]. Journal of Process Control, 2004, 14(4):411-422 [7] JONES A G. Optimal operation of a batch cooling crystallizer[J]. Chemical Engineering Science, 1974, 29(5):1075-1087 [8] MORARI M. Some comments on the optimal operation of batch crystallizers[J]. Chemical Engineering Communications, 1980, 4(1/2/3):167-171 [9] AJINKYA M B, RAY W H. On the optimal operation of crystallization processes[J]. Chemical Engineering Communications, 1974, 1(4):181-186 [10] TSENG Y T, WARD J D. Comparison of objective functions for batch crystallization using a simple process model and Pontryagin's minimum principle[J]. Computers & Chemical Engineering, 2017, 99:271-279 [11] HU Q, ROHANI S, JUTAN A. Modelling and optimization of seeded batch crystallizers[J]. Computers & Chemical Engineering, 2005, 29(4):911-918 [12] HU Q, ROHANI S, JUTAN A. New numerical method for solving the dynamic population balance equations[J]. AIChE Journal, 2005, 51(11):3000-3006 [13] HU Q, ROHANI S, WANG D, et al. Optimal control of a batch cooling seeded crystallizer[J]. Powder Technology, 2005, 156(2/3):170-176 [14] EL-FARRA N H, CHIU T Y, CHRISTOFIDES P D. Analysis and control of particulate processes with input constraints[J]. AIChE Journal, 2001, 47(8):1849-1865 [15] CHOONG K L, SMITH R. Novel strategies for optimization of batch, semi-batch and heating/cooling evaporative crystallization[J]. Chemical Engineering Science, 2004, 59(2):329-343 [16] WARD J D, MELLICHAMP D A, DOHERTY M F. Choosing an operating policy for seeded batch crystallization[J]. AIChE Journal, 2006, 52(6):2046-2054 [17] TORBACKE M, RASMUSON Å C. Influence of different scales of mixing in reaction crystallization[J]. Chemical Engineering Science, 2001, 56(7):2459-2473 [18] MUKHOPADHYAY S C, FARRELL EPSTEIN M A. Computer model for crystal size distribution control in a semi-batch evaporative crystallizer[J]. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(3):352-358 [19] CHOONG K L, SMITH R. Optimization of batch cooling crystallization[J]. Chemical Engineering Science, 2004, 59(2):313-327 [20] NAGY Z K, FUJIWARA M, BRAATZ R D. Modelling and control of combined cooling and antisolvent crystallization processes[J]. Journal of Process Control, 2008, 18(9):856-864 [21] MENG Y, LI W, CHEN Q, et al. An improved multi-objective evolutionary optimization algorithm for sugar cane crystallization[J]. International Journal on Smart Sensing and Intelligent Systems, 2016, 9(2):953-978 [22] SARKAR D, ROHANI S, JUTAN A. Multiobjective optimization of semibatch reactive crystallization processes[J]. AIChE Journal, 2007, 53(5):1164-1177 [23] TRIFKOVIC M, SHEIKHZADEH M, ROHANI S. Kinetics estimation and single and multi-objective optimization of a seeded, anti-solvent, isothermal batch crystallizer[J]. Industrial & Engineering Chemistry Research, 2008, 47(5):1586-1595 [24] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197 [25] SARKAR D, MODAK J M. Pareto-optimal solutions for multi-objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm[J]. Chemical Engineering Science, 2005, 60(2):481-492 [26] HEMALATHA K, NAGVENI P, KUMAR P N, et al. Multiobjective optimization and experimental validation for batch cooling crystallization of citric acid anhydrate[J]. Computers & Chemical Engineering, 2018, 112:292-303 [27] KING J C, LI H, GROVER M A, et al. Optimization of two-stage cooling profile in unseeded batch crystallization[J]. IFAC-PapersOnLine, 2015, 48(8):297-302 [28] Ó'CIARDHÁ C T, HUTTON K W, MITCHELL N A, et al. Simultaneous parameter estimation and optimization of a seeded antisolvent crystallization[J]. Crystal Growth & Design, 2012, 12(11):5247-5261 [29] DAFNOMILIS A, DIAB S, RODMAN A D, et al. Multiobjective dynamic optimization of ampicillin batch crystallization:Sensitivity analysis of attainable performance vs product quality constraints[J]. Industrial & Engineering Chemistry Research, 2019, 58(40):18756-18771 [30] TSENG Y T, PAN H, WARD J D. Pareto-optimal fronts for simple crystallization systems using Pontryagin's minimum principle[J]. Industrial & Engineering Chemistry Research, 2019, 58(31):14239-14251 [31] 周锋, 潘建辉, 孙丹玲, 等. 固体药物多晶型的研究进展[J]. 云南化工, 2021, 48(12):1-3 ZHOU Feng, PAN Jianhui, SUN Danling, et al. Research progress on polymorphs of solid medicines[J]. Yunnan Chemical Technology, 2021, 48(12):1-3(in Chinese) [32] GHUGARE P, DONGRE V, KARMUSE P, et al. Solid state investigation and characterization of the polymorphic and pseudopolymorphic forms of indapamide[J]. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51(3):532-540 [33] AN J, CHOI G J, KIM W S. Polymorphic and kinetic investigation of adefovir dipivoxil during phase transformation[J]. International Journal of Pharmaceutics, 2012, 422(1/2):185-193 [34] GRZESIAK A L, URIBE F J, OCKWIG N W, et al. Polymer-induced heteronucleation for the discovery of new extended solids[J]. Angewandte Chemie International Edition, 2006, 45(16):2553-2556 [35] LÓPEZ-MEJÍAS V, KAMPF J W, MATZGER A J. Polymer-induced heteronucleation of tolfenamic acid:Structural investigation of a pentamorph[J]. Journal of the American Chemical Society, 2009, 131(13):4554-4555 [36] ABER J E, ARNOLD S, GARETZ B A, et al. Strong dc electric field applied to supersaturated aqueous glycine solution induces nucleation of the γ polymorph[J]. Physical Review Letters, 2005, 94(14):145503 [37] PUDASAINI N, UPADHYAY P P, PARKER C R, et al. Downstream processability of crystal habit-modified active pharmaceutical ingredient[J]. Organic Process Research & Development, 2017, 21(4):571-577 [38] YANG G, KUBOTA N, SHA Z, et al. Crystal shape control by manipulating supersaturation in batch cooling crystallization[J]. Crystal Growth & Design, 2006, 6(12):2799-2803 [39] ACEVEDO D, TANDY Y, NAGY Z K. Multiobjective optimization of an unseeded batch cooling crystallizer for shape and size manipulation[J]. Industrial & Engineering Chemistry Research, 2015, 54(7):2156-2166 [40] PAN H, WARD J D. Optimization of simple batch crystallization systems considering crystal shape and nucleation[J]. Industrial & Engineering Chemistry Research, 2020, 59(20):9550-9561 [41] CHUNG S H, MA D, BRAATZ R D. Optimal seeding in batch crystallization[J]. The Canadian Journal of Chemical Engineering, 1999, 77(3):590-596 [42] KUBOTA N, DOKI N, YOKOTA M, et al. Seeding policy in batch cooling crystallization[J]. Powder Technology, 2001, 121(1):31-38 [43] HUANG D, LIU W, ZHAO S, et al. Quantitative design of seed load for solution cooling crystallization based on kinetic analysis[J]. Chemical Engineering Journal, 2010, 156(2):360-365 [44] ZHANG G, ROHANI S. On-line optimal control of a seeded batch cooling crystallizer[J]. Chemical Engineering Science, 2003, 58(9):1887-1896 [45] AAMIR E, NAGY Z K, RIELLY C D. Evaluation of the effect of seed preparation method on the product crystal size distribution for batch cooling crystallization processes[J]. Crystal Growth & Design, 2010, 10(11):4728-4740 [46] PATIENCE D B, DELL'ORCO P C, RAWLINGS J B. Optimal operation of a seeded pharmaceutical crystallization with growth-dependent dispersion[J]. Organic Process Research & Development, 2004, 8(4):609-615 [47] COSTA C B B, MACIEL F R. Evaluation of optimisation techniques and control variable formulations for a batch cooling crystallization process[J]. Chemical Engineering Science, 2005, 60(19):5312-5322 [48] HOJJATI H, ROHANI S. Cooling and seeding effect on supersaturation and final crystal size distribution (CSD) of ammonium sulphate in a batch crystallizer[J]. Chemical Engineering and Processing:Process Intensification, 2005, 44(9):949-957 [49] YU Z, CHOW P S, TAN R. Seeding and constant-supersaturation control by ATR-FTIR in anti-solvent crystallization[J]. Organic Process Research & Development, 2006, 10(4):717-722 [50] PAN H, WARD J D. Dimensionless framework for seed recipe design and optimal control of batch crystallization[J]. Industrial & Engineering Chemistry Research, 2021, 60(7):3013-3026 [51] GAO Z, ROHANI S, GONG J, et al. Recent developments in the crystallization process:Toward the pharmaceutical industry[J]. Engineering, 2017, 3(3):343-353 [52] 王耀国, 赵绍磊, 杨一纯, 等. 手性药物结晶拆分的研究进展[J]. 化工学报, 2019, 70(10):3651-3662 WANG Yaoguo, ZHAO Shaolei, YANG Yichun, et al. Recent progress on chiral resolution of pharmaceuticals by crystallization[J]. CIESC Journal, 2019, 70(10):3651-3662(in Chinese) [53] 吕正敏, 王玉军, 冯利艳, 等. 溶析结晶法提纯卡前列甲酯的研究[J]. 辽宁化工, 2022, 51(1):19-21 LYU Zhengmin, WANG Yujun, FENG Liyan, et al. Study on purification of carboprost methylate by solvent-out crystallization method[J]. Liaoning Chemical Industry, 2022, 51(1):19-21(in Chinese) [54] 张立斌, 张民, 王利杰, 等. 头孢克洛结晶方法及产品质量研究[J]. 精细化工中间体, 2022, 52(1):39-43 ZHANG Libin, ZHANG Min, WANG Lijie, et al. Crystallization method and product quality of cefaclor[J]. Fine Chemical Intermediates, 2022, 52(1):39-43(in Chinese) [55] CORRIOU J P, ROHANI S. A new look at optimal control of a batch crystallizer[J]. AIChE Journal, 2008, 54(12):3188-3206 [56] QAMAR S, MUKHTAR S, SEIDEL-MORGENSTERN A, et al. An efficient numerical technique for solving one-dimensional batch crystallization models with size-dependent growth rates[J]. Chemical Engineering Science, 2009, 64(16):3659-3667 [57] CAO Y, ACEVEDO D, NAGY Z K, et al. Real-time feasible multi-objective optimization based nonlinear model predictive control of particle size and shape in a batch crystallization process[J]. Control Engineering Practice, 2017, 69:1-8 [58] GE M, WANG Q, CHIU M S, et al. An effective technique for batch process optimization with application to crystallization[J]. Chemical Engineering Research and Design, 2000, 78(1):99-106 [59] WU J, WANG J, YU T, et al. An approach to continuous approximation of Pareto front using geometric support vector regression for multi-objective optimization of fermentation process[J]. Chinese Journal of Chemical Engineering, 2014, 22(10):1131-1140 [60] SRIDHAR L N. Multiobjective nonlinear model predictive control of pharmaceutical batch crystallizers[J]. Drug Development and Industrial Pharmacy, 2020, 46(12):2089-2097 [61] LAKERVELD R, KRAMER H J M, STANKIEWICZ A I, et al. Application of generic principles of process intensification to solution crystallization enabled by a task-based design approach[J]. Chemical Engineering and Processing:Process Intensification, 2010, 49(9):979-991 [62] SU Q, NAGY Z K, RIELLY C D. Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages:Modelling, design, and control[J]. Chemical Engineering and Processing:Process Intensification, 2015, 89:41-53 [63] ALVAREZ A J, MYERSON A S. Continuous plug flow crystallization of pharmaceutical compounds[J]. Crystal Growth & Design, 2010, 10(5):2219-2228 [64] SU Q, RIELLY C D, POWELL K A, et al. Mathematical modelling and experimental validation of a novel periodic flow crystallization using MSMPR crystallizers[J]. AIChE Journal, 2017, 63(4):1313-1327 [65] JIANG M, ZHU Z, JIMENEZ E, et al. Continuous-flow tubular crystallization in slugs spontaneously induced by hydrodynamics[J]. Crystal Growth & Design, 2014, 14(2):851-860 [66] NEUGEBAUER P, KHINAST J G. Continuous crystallization of proteins in a tubular plug-flow crystallizer[J]. Crystal Growth & Design, 2015, 15(3):1089-1095 [67] WIEDMEYER V, ANKER F, BARTSCH C, et al. Continuous crystallization in a helically coiled flow tube:Analysis of flow field, residence time behavior, and crystal growth[J]. Industrial & Engineering Chemistry Research, 2017, 56(13):3699-3712 [68] MCGLONE T, BRIGGS N E B, CLARK C A, et al. Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization[J]. Organic Process Research & Development, 2015, 19(9):1186-1202 [69] PORRU M, ÖZKAN L. Simultaneous design and control of an industrial two-stage mixed suspension mixed product removal crystallizer[J]. Journal of Process Control, 2019, 80:60-77 [70] MILELLA F, GAZZANI M, SUTTER D, et al. Process synthesis, modeling and optimization of continuous cooling crystallization with heat integration-Application to the chilled ammonia CO2 capture process[J]. Industrial & Engineering Chemistry Research, 2018, 57(34):11712-11727 [71] POWER G, HOU G, KAMARAJU V K, et al. Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal crystallizer[J]. Chemical Engineering Science, 2015, 133:125-139 [72] RIDDER B J, MAJUMDER A, NAGY Z K. Population balance model based multi-objective optimization and robustness analysis of a continuous plug flow antisolvent crystallizer[C]//2014 American Control Conference. Portland, OR, USA. IEEE, 2014:3530-3535 [73] RIDDER B J, MAJUMDER A, NAGY Z K. Population balance model-based multiobjective optimization of a multisegment multiaddition (MSMA) continuous plug-flow antisolvent crystallizer[J]. Industrial & Engineering Chemistry Research, 2014, 53(11):4387-4397 [74] 龚俊波, 孙杰, 王静康. 面向智能制造的工业结晶研究进展[J]. 化工学报, 2018, 69(11):4505-4517 GONG Junbo, SUN Jie, WANG Jingkang. Research progress of industrial crystallization towards intelligent manufacturing[J]. CIESC Journal, 2018, 69(11):4505-4517(in Chinese)
|