[1] 黄欣, 陈业钢, 苏楠楠, 等. 高盐废水分质结晶及资源化利用研究进展[J]. 化学工业与工程, 2019,36(1):10-23 HUANG X, CHEN Y, SU N, et al. Research on fractional crystallization technologies for recovering salts from high salinity wastewater[J]. Chemical Industry and Engineering,2019,36(1):10-23(in Chinese)
[2] 宋晓鹏, 屠民海, 龚俊波.头孢克肟溶析结晶过程球形生长机理探究[J]. 化学工业与工程, 2017,34(6):57-61 SONG X, TU M, GONG J. Research on the spherical growth mechanism of cefixime during the anti-solvent crystallization process[J]. Chemical Industry and Engineering,2017,34(6):57-61(in Chinese)
[3] TAYLOR L S, BRAUN D E, STEED J W. Crystals and crystallization in drug delivery design[J]. Molecular Pharmaceutics, 2021, 18(3):751-753
[4] BODÁK B, MAZZOTTI M. Solid-state deracemization via temperature cycles in continuous operation:Model-based process design[J]. Crystal Growth & Design, 2022, 22(3):1846-1856
[5] 赵胤, 高俊彦, 王艳蕾, 等. 五水柠檬酸钠连续结晶动力学研究[J]. 化学工业与工程, 2013, 30(3):13-16, 43 ZHAO Yin, GAO Junyan, WANG Yanlei, et al. Investigation on continuous crystallization kinetics of trisodium citrate pentahydrate[J]. Chemical Industry and Engineering, 2013, 30(3):13-16, 43(in Chinese)
[6] SCHABER S D, GEROGIORGIS D I, RAMACHANDRAN R. Economic analysis of integrated continuous and batch pharmaceutical manufacturing:A case study[J]. Industrial & Engineering Chemistry Research, 2011, 50(17):10083-10092
[7] LIU Q, LI M, LIU C, et al. Continuous synthesis of polymer-coated drug nanoparticles by heterogeneous nucleation in a hollow-fiber membrane module[J]. Industrial & Engineering Chemistry Research, 2022, 61(1):349-358
[8] NICOUD L, LICORDARI F, MYERSON A S. Polymorph control in MSMPR crystallizers. A case study with paracetamol[J]. Organic Process Research & Development, 2019, 23(5):794-806
[9] MA Y, WU S, MACARINGUE E G J, et al. Recent progress in continuous crystallization of pharmaceutical products:Precise preparation and control[J]. Organic Process Research & Development, 2020, 24(10):1785-1801
[10] TACSI K, PATAKI H, DOMOKOS A, et al. Direct processing of a flow reaction mixture using continuous mixed suspension mixed product removal crystallizer[J]. Crystal Growth & Design, 2020, 20(7):4433-4442
[11] VETTER T, BURCHAM C L, DOHERTY M F. Designing robust crystallization processes in the presence of parameter uncertainty using attainable regions[J]. Industrial & Engineering Chemistry Research, 2015, 54(42):10350-10363
[12] CAPELLADES G, DUSO A, DAM-JOHANSEN K, et al. Continuous crystallization with gas entrainment:Evaluating the effect of a moving gas phase in an MSMPR crystallizer[J]. Organic Process Research & Development, 2019, 23(2):252-262
[13] HU C, SHORES B T, DERECH R A, et al. Continuous reactive crystallization of an API in PFR-CSTR cascade with in-line PATs[J]. Reaction Chemistry & Engineering, 2020, 5(10):1950-1962
[14] GAO Z, WU Y, GONG J, et al. Continuous crystallization of α-form L-glutamic acid in an MSMPR-Tubular crystallizer system[J]. Journal of Crystal Growth, 2019, 507:344-351
[15] DARMALI C, MANSOURI S, YAZDANPANAH N, et al. Mechanisms and control of impurities in continuous crystallization:A review[J]. Industrial & Engineering Chemistry Research, 2019, 58(4):1463-1479
[16] RIMEZ B, DEBUYSSCHōRE R, CONTÉ J, et al. Continuous-flow tubular crystallization to discriminate between two competing crystal polymorphs. 1. Cooling crystallization[J]. Crystal Growth & Design, 2018, 18(11):6431-6439
[17] RIMEZ B, CONTE J, LECOMTE-NORRANT E, et al. Continuous-flow tubular crystallization to discriminate between two competing crystal polymorphs. 2. Antisolvent crystallization[J]. Crystal Growth & Design, 2018, 18(11):6440-6447
[18] YU F, MAO Y, ZHAO H, et al. Enhancement of continuous crystallization of lysozyme through ultrasound[J]. Organic Process Research & Development, 2021, 25(11):2508-2515
[19] CHEN M, WANG J, LI S, et al. CFD-PBE Model and simulation of continuous antisolvent crystallization in an impinging jet crystallizer with a multiorifice at different positions[J]. Industrial & Engineering Chemistry Research, 2021, 60(31):11802-11811
[20] ALVAREZ A J, MYERSON A S. Continuous plug flow crystallization of pharmaceutical compounds[J]. Crystal Growth & Design, 2010, 10(5):2219-2228
[21] NEUGEBAUER P, KHINAST J G. Continuous crystallization of proteins in a tubular plug-flow crystallizer[J]. Crystal Growth & Design, 2015, 15(3):1089-1095
[22] SU Q, BENYAHIA B, NAGY Z K, et al. Mathematical modeling, design, and optimization of a multisegment multiaddition plug-flow crystallizer for antisolvent crystallizations[J]. Organic Process Research & Development, 2015, 19(12):1859-1870
[23] MAJUMDER A, NAGY Z K. Fines removal in a continuous plug flow crystallizer by optimal spatial temperature profiles with controlled dissolution[J]. AIChE Journal, 2013, 59(12):4582-4594
[24] RIDDER B J, MAJUMDER A, NAGY Z K. Parametric, optimization-based study on the feasibility of a multisegment antisolvent crystallizer for in situ fines removal and matching of target size distribution[J]. Industrial & Engineering Chemistry Research, 2016, 55(8):2371-2380
[25] WU B, LI J, LI C, et al. Antisolvent crystallization intensified by a jet crystallizer and a method for investigating crystallization kinetics[J]. Chemical Engineering Science, 2020, doi:10.1016/j.ces.2019.115259
[26] PANDIT A V, RANADE V V. Fluidic oscillator as a continuous crystallizer:Feasibility evaluation[J]. Industrial & Engineering Chemistry Research, 2020, 59(9):3996-4006
[27] HAO Z, LIU G, WANG Y, et al. Studies on the drive mechanism of the main jet deflection inside a fluidic oscillator[J]. Industrial & Engineering Chemistry Research, 2020, 59(20):9629-9641
[28] WEN T, WANG H, HUANG W, et al. Research progress on controlling of crystal size distribution (CSD) in crystallization process[J]. Chemical Industry and Engineering,2021,38(4):44-55
[29] AVILA M, FLETCHER D F, POUX M, et al. Predicting power consumption in continuous oscillatory baffled reactors[J]. Chemical Engineering Science, 2020, doi:10.1016/j.ces.2019.115310
[30] FERREIRA A, ADESITE P O, TEIXEIRA J A, et al. Effect of solids on O2 mass transfer in an oscillatory flow reactor provided with smooth periodic constrictions[J]. Chemical Engineering Science, 2017, 170:400-409
[31] TAHIR F, KRZEMIENIEWSKA-NANDWANI K, MACK J, et al. Advanced control of a continuous oscillatory flow crystalliser[J]. Control Engineering Practice, 2017, 67:64-75
[32] PHAN A N, HARVEY A. Development and evaluation of novel designs of continuous mesoscale oscillatory baffled reactors[J]. Chemical Engineering Journal, 2010, 159(1/2/3):212-219
[33] LAWTON S, STEELE G, SHERING P, et al. Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer[J]. Organic Process Research & Development, 2009, 13(6):1357-1363
[34] ONYEMELUKWE I I, NAGY Z K, RIELLY C D. Solid-liquid axial dispersion performance of a mesoscale continuous oscillatory flow crystalliser with smooth periodic constrictions using a non-invasive dual backlit imaging technique[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2019.122862
[35] FERREIRA A, TEIXEIRA J A, ROCHA F. O2 mass transfer in an oscillatory flow reactor provided with smooth periodic constrictions. Individual characterization of kL[J]. Chemical Engineering Journal, 2015, 262:499-508
[36] GOUGH P, NI X, SYMES K C. Experimental flow visualisation in a modified pulsed baffled reactor[J]. Journal of Chemical Technology & Biotechnology, 1997, 69(3):321-328
[37] OLIVA J A, WU W, GREENE M R, et al. Continuous spherical crystallization of lysozyme in an oscillatory baffled crystallizer using emulsion solvent diffusion in droplets[J]. Crystal Growth & Design, 2020, 20(2):934-947
[38] MCGLONE T, BRIGGS N E B, CLARK C A, et al. Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization[J]. Organic Process Research & Development, 2015, 19(9):1186-1202
[39] CALLAHAN C J, NI X. Probing into nucleation mechanisms of cooling crystallization of sodium chlorate in a stirred tank crystallizer and an oscillatory baffled crystallizer[J]. Crystal Growth & Design, 2012, 12(5):2525-2532
[40] JOLLIFFE H G, GEROGIORGIS D I. Process modelling, design and technoeconomic evaluation for continuous paracetamol crystallisation[J]. Computers & Chemical Engineering, 2018, 118:224-235
[41] LIU Y, DUNN D, LIPARI M, et al. A comparative study of continuous operation between a dynamic baffle crystallizer and a stirred tank crystallizer[J]. Chemical Engineering Journal, 2019, 367:278-294
[42] YAO C, ZHAO Y, ZHENG J, et al. The effect of liquid viscosity and modeling of mass transfer in gas-liquid slug flow in a rectangular microchannel[J]. AIChE Journal, 2020, doi:10.1002/aic.16934
[43] PU S, HADINOTO K. Improving the reproducibility of size distribution of protein crystals produced in continuous slug flow crystallizer operated at short residence time[J]. Chemical Engineering Science, 2021, doi:10.1016/j.ces.2020.116181
[44] SU M, GAO Y. Air-liquid segmented continuous crystallization process optimization of the flow field, growth rate, and size distribution of crystals[J]. Industrial & Engineering Chemistry Research, 2018, 57(10):3781-3791
[45] KACKER R, REGENSBURG S I, KRAMER H J M. Residence time distribution of dispersed liquid and solid phase in a continuous oscillatory flow baffled crystallizer[J]. Chemical Engineering Journal, 2017, 317:413-423
[46] RASCHE M L, JIANG M, BRAATZ R D. Mathematical modeling and optimal design of multi-stage slug-flow crystallization[J]. Computers & Chemical Engineering, 2016, 95:240-248
[47] BESENHARD M O, NEUGEBAUER P, SCHEIBELHOFER O, et al. Crystal engineering in continuous plug-flow crystallizers[J]. Crystal Growth & Design, 2017, 17(12):6432-6444
[48] MOU M, JIANG M. Fast continuous non-seeded cooling crystallization of glycine in slug flow:Pure α-form crystals with narrow size distribution[J]. Journal of Pharmaceutical Innovation, 2020, 15(2):281-294
[49] BELCA L M, RU?IGAJ A, TESLI?D, et al. The use of ultrasound in the crystallization process of an active pharmaceutical ingredient[J]. Ultrasonics Sonochemistry, 2019, doi:10.1016/j.ultsonch.2019.104642
[50] RAMIREZ M H, JORDENS J, VALDEZ L P M, et al. Effects of ultrasonic irradiation on crystallization kinetics, morphological and structural properties of zeolite FAU[J]. Ultrasonics Sonochemistry, 2020, doi:10.1016/j.ultsonch.2020.105010
[51] JIANG M, PAPAGEORGIOU C D, WAETZIG J, et al. Indirect ultrasonication in continuous slug-flow crystallization[J]. Crystal Growth & Design, 2015, 15(5):2486-2492
[52] KASHID M N, GERLACH I, GOETZ S, et al. Internal circulation within the liquid slugs of a liquid-liquid slug-flow capillary microreactor[J]. Industrial & Engineering Chemistry Research, 2005, 44(14):5003-5010
[53] GADDEM M R, OOKAWARA S, NIGAM K D P, et al. Numerical modeling of segmented flow in coiled flow inverter:Hydrodynamics and mass transfer studies[J]. Chemical Engineering Science, 2021, doi:10.1016/j.ces.2020.116400
[54] SHARMA L, NIGAM K D P, ROY S. Single phase mixing in coiled tubes and coiled flow inverters in different flow regimes[J]. Chemical Engineering Science, 2017, 160:227-235
[55] SONI S, SHARMA L, MEENA P, et al. Compact coiled flow inverter for process intensification[J]. Chemical Engineering Science, 2019, 193:312-324
[56] TIWARI C P, DELGADO-LICONA F, VALENCIA-LLOMPART M, et al. Shining light on the coiled-flow inverter-Continuous-flow photochemistry in a static mixer[J]. Industrial & Engineering Chemistry Research, 2020, 59(9):3865-3872
[57] BENITEZ-CHAPA A G, NIGAM K D P, ALVAREZ A J. Process intensification of continuous antisolvent crystallization using a coiled flow inverter[J]. Industrial & Engineering Chemistry Research, 2020, 59(9):3934-3942
[58] HOHMANN L, GORNY R, KLAAS O, et al. Design of a continuous tubular cooling crystallizer for process development on lab-scale[J]. Chemical Engineering & Technology, 2016, 39(7):1268-1280
[59] NGUYEN A T, KIM J M, CHANG S. Taylor vortex effect on phase transformation of guanosine 5-monophosphate in drowning-out crystallization[J]. Industrial & Engineering Chemistry Research, 2010, 49(10):4865-4872
[60] BORGES J E, PADILLA E L M. Influence of forced oscillation, orbital motion, axial flow and free motion of the inner pipe on Taylor-Couette flow[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(2):1-15
[61] WU Z, KIM D H, KIM W S. Batch cooling crystallization in non-isothermal Taylor vortex flow:Effective method for controlling crystal size distribution[J]. Crystal Growth & Design, 2017, 17:28-36
[62] PARK K, YANG D. Modeling and simulation for feasibility study of Taylor-couette crystallizer as crystal seed manufacturing system[J]. IFAC-PapersOnLine, 2015, 48(8):321-324
[63] BRETHOUWER G. Much faster heat/mass than momentum transport in rotating Couette flows[J]. Journal of Fluid Mechanics, 2021, doi:10.1017/jfm.2020.1176
[64] KIM J M, CHANG S M, CHANG J H, et al. Agglomeration of nickel/cobalt/manganese hydroxide crystals in Couette-Taylor crystallizer[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 384(1/2/3):31-39
[65] NGUYEN A T, YU T, KIM W S. Couette-Taylor crystallizer:Effective control of crystal size distribution and recovery of L[J]. Journal of Crystal Growth, 2017, 469:65-77
[66] YAMAMOTO T, ITOH K, MAEDA K, et al. Effect of Taylor vortex on melt crystallization of fatty acids[J]. Crystal Research and Technology, 2019, doi:10.1002/crat.201900050
[67] NGUYEN A T, KIM W S. Effect of sinusoidal Taylor vortex flow on cooling crystallization of L-lysine[J]. Korean Journal of Chemical Engineering, 2017, 34(7):1896-1904
[68] NGUYEN A T, KIM W S. Influence of feeding mode on cooling crystallization of L-lysine in Couette-Taylor crystallizer[J]. Korean Journal of Chemical Engineering, 2017, 34(7):2002-2010
[69] WANG J, GAO J, WANG H, et al. Miniaturization of the whole process of protein crystallographic analysis by a microfluidic droplet robot:From nanoliter-scale purified proteins to diffraction-quality crystals[J]. Analytical Chemistry, 2019, 91(15):10132-10140
[70] SU Z, HE J, ZHOU P, et al. A high-throughput system combining microfluidic hydrogel droplets with deep learning for screening the antisolvent-crystallization conditions of active pharmaceutical ingredients[J]. Lab on a Chip, 2020, 20(11):1907-1916
[71] SIVAKUMAR R, LEE N Y. Microfluidic device fabrication mediated by surface chemical bonding[J]. The Analyst, 2020, 145(12):4096-4110
[72] SHI H, LI F, HUANG X, et al. Screening and manipulation of L-glutamic acid polymorphs by antisolvent crystallization in an easy-to-use microfluidic device[J]. Industrial & Engineering Chemistry Research, 2020, 59(13):6102-6111
[73] PUIGMARTÃ-LUIS J. Microfluidic platforms:A mainstream technology for the preparation of crystals[J]. Chemical Society Reviews, 2014, 43(7):2253-2271
[74] SHI H, XIAO Y, FERGUSON S, et al. Progress of crystallization in microfluidic devices[J]. Lab on a Chip, 2017, 17(13):2167-2185
[75] HIRAMA H, YOSHII S, KOMAZAKI Y, et al. Droplet handling for chemical reactors using a digital microfluidic device[J]. Chemistry Letters, 2021, 50(2):213-216
[76] MAEKI M, YAMAZAKI S, TAKEDA R, et al. Real-time measurement of protein crystal growth rates within the microfluidic device to understand the microspace effect[J]. ACS Omega, 2020, 5(28):17199-17206
[77] HE F, ZHANG M, WANG W, et al. Designable polymeric microparticles from droplet microfluidics for controlled drug release[J]. Advanced Materials Technologies, 2019, doi:10.1002/admt.201800687
[78] MOU C, WANG W, JU X, et al. Dual-responsive microcarriers with sphere-in-capsule structures for co-encapsulation and sequential release[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98:63-69
[79] ZHANG J, XU W, XU F, et al. Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing[J]. Journal of Food Engineering, 2021, doi:10.1016/j.jfoodeng.2020.110212
[80] MAJUMDER A, NAGY Z K. Dynamic modeling of encrust formation and mitigation strategy in a continuous plug flow crystallizer[J]. Crystal Growth & Design, 2015, 15(3):1129-1140
[81] LEVENSTEIN M A, KIM Y Y, HUNTER L, et al. Evaluation of microflow configurations for scale inhibition and serial X-ray diffraction analysis of crystallization processes[J]. Lab on a Chip, 2020, 20(16):2954-2964
[82] WANG Y, SU M, BAI Y. Mechanism of glycine crystal adhesion and clogging in a continuous tubular crystallizer[J]. Industrial & Engineering Chemistry Research, 2020, 59(1):25-33
[83] TRAMPU? M, TESLIC' D, LIKOZAR B. Process analytical technology-based (PAT) model simulations of a combined cooling, seeded and antisolvent crystallization of an active pharmaceutical ingredient (API)[J]. Powder Technology, 2020, 366:873-890
[84] ZHAO Y, CUI J, LIU L, et al. Crystal growth kinetics of benzoic acid in aqueous ethanol solution[J]. Industrial & Engineering Chemistry Research, 2021, 60(2):1026-1035
[85] ACEVEDO D, WU W, YANG X, et al. Evaluation of focused beam reflectance measurement (FBRM) for monitoring and predicting the crystal size of carbamazepine in crystallization processes[J]. CrystEngComm, 2021, 23(4):972-985
[86] LI X, WANG N, WANG C, et al. Mechanism and regulation strategy of solution-mediated polymorphic transformation:A case of 5-nitrofurazone[J]. Industrial & Engineering Chemistry Research, 2021, 60(5):2337-2347
[87] SCHIELE S A, MEINHARDT R, EDER C, et al. ATR-FTIR spectroscopy for in-line anomer concentration measurements in solution:A case study of lactose[J]. Food Control, 2020, doi:10.1016/j.foodcont.2019.107024
[88] RAMON P, OLIVA J A, BURCHAM C L, et al. Process intensification through continuous spherical crystallization using an oscillatory flow baffled crystallizer[J]. Crystal Growth & Design, 2017, 17(9):4776-4784
[89] ZHANG Y, XUE D. In-situ micro-Raman spectroscopy study of gypsum crystallization driven by chemical reaction[J]. Journal of Molecular Structure, 2020, doi:10.1016/j.molstruc.2020.128043
[90] SU W, HAO H, GLENNON B, et al. Spontaneous polymorphic nucleation of D-mannitol in aqueous solution monitored with Raman spectroscopy and FBRM[J]. Crystal Growth & Design, 2013, 13(12):5179-5187
[91] TANAKA K, TAKIYAMA H. Effect of oiling-out during crystallization on purification of an intermediate compound[J]. Organic Process Research & Development, 2019, 23(9):2001-2008
[92] SIMONE E, SALEEMI A N, NAGY Z K. In situ monitoring of polymorphic transformations using a composite sensor array of Raman, NIR, and ATR-UV/vis spectroscopy, FBRM, and PVM for an intelligent decision support system[J]. Organic Process Research & Development, 2014, 19(1):260-269
[93] ZHOU Y, WANG J, WANG T, et al. Self-assembly of monodispersed carnosine spherical crystals in a reverse antisolvent crystallization process[J]. Crystal Growth & Design, 2019, 19(5):2695-2705
[94] KUTLUAY S, CEYHAN A A, ?AHIN Ö, et al. Utilization of in situ FBRM and PVM probes to analyze the influences of monopropylene glycol and oleic acid as novel additives on the properties of boric acid crystals[J]. Industrial & Engineering Chemistry Research, 2020, 59(19):9198-9206
[95] SIMON L L, MERZ T, DUBUIS S, et al. In-situ monitoring of pharmaceutical and specialty chemicals crystallization processes using endoscopy-stroboscopy and multivariate image analysis[J]. Chemical Engineering Research and Design, 2012, 90(11):1847-1855
[96] DEVOS N, REYMAN D, SANCHEZ-CORTÉS S. Chocolate composition and its crystallization process:A multidisciplinary analysis[J]. Food Chemistry, 2021, doi:10.1016/j.foodchem.2020.128301
[97] DA SILVA T D, DANTHINE S, MARTINI S. Palm-based fat crystallized at different temperatures with and without high-intensity ultrasound in batch and in a scraped surface heat exchanger[J]. Food Science and Technology, 2021, doi:10.1016/j.lwt.2020.110593
[98] SADEGHPOUR P, HAGHIGHI M, EBRAHIMI A. Ultrasound-assisted rapid hydrothermal design of efficient nanostructured MFI-Type aluminosilicate catalyst for methanol to propylene reaction[J]. Ultrasonics Sonochemistry, 2021, doi:10.1016/j.ultsonch.2020.105416
[99] HUSSAIN M N, JORDENS J, KUHN S, et al. Ultrasound as a tool for polymorph control and high yield in flow crystallization[J]. Chemical Engineering Journal, 2021, doi:10.1016/j.cej.2020.127272
[100] AWARI H D, SABNIS S S, GOGATE P R. Improved crystallization of ampicillin trihydrate based on the use of ultrasound[J]. Industrial & Engineering Chemistry Research, 2022, 61(6):2538-2547
[101] MAO Y, LI F, WANG T, et al. Enhancement of lysozyme crystallization under ultrasound field[J]. Ultrasonics Sonochemistry, 2020, doi:10.1016/j.ultsonch.2020.104975
[102] HAN B, EZEANOWI N C, KOIRANEN T, et al. Insights into design criteria for a continuous, sonicated modular tubular cooling crystallizer[J]. Crystal Growth & Design, 2018, 18(12):7286-7295
[103] SAVVOPOULOS S, HUSSAIN M, JORDENS J, et al. A mathematical model of the ultrasound-assisted continuous tubular crystallization of aspirin[J]. Crystal Growth & Design, 2019, 19(9):5111-5122
[104] HUSSAIN M N, BAETEN S, JORDENS J, et al. Process intensified anti-solvent crystallization of o-aminobenzoic acid via sonication and flow[J]. Chemical Engineering and Processing-Process Intensification, 2020, doi:10.1016/j.cep.2020.107823
[105] CHENG X, HUANG X, TIAN B, et al. Behaviors and physical mechanism of ceftezole sodium de-agglomeration driven by ultrasound[J]. Ultrasonics Sonochemistry, 2021, doi:10.1016/j.ultsonch.2021.105570
|