[1] 王国顺. 基于改进鲸群算法的置换流水车间调度问题的应用研究[D]. 辽宁鞍山:辽宁科技大学, 2019 WANG Guoshun. Application research of permutation flow shop scheduling problem based on improved whale algorithm[D]. Liaoning Anshan:University of Science and Technology Liaoning, 2019 (in Chinese)
[2] HOLLAND J B, HOLLAND J, HOLLAND J H, et al. Adaption in natural and artificial systems[J]. Ann Arbor, 1975,6(2):126-137
[3] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67
[4] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69:46-61
[5] YANG X, DEB S. Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization nature inspired cooperative strategies for optimization[M]. Berlin Heidelberg:Springer, 2010
[6] DORIGO M, MANIEZZO V, COLORNI A. Ant system:Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1):29-41
[7] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. Perth, WA, Australia. IEEE, 1995:1942-1948
[8] 秦煜森, 胡凌, 青志明, 等. 基于萤火虫算法的电网节点编号优化[J]. 重庆理工大学学报(自然科学), 2017, 31(11):198-203 QIN Yusen, HU Ling, QING Zhiming, et al. Researches on the grid node numbering optimization based on the firefly algorithm[J]. Journal of Chongqing University of Technology (Natural Science), 2017, 31(11):198-203(in Chinese)
[9] KIRKPATRICK S, VECCHI M P. Optimization by simulated annealing[M]//MEZARD M, PARISI G, VIRASORO M A. Spin glass theory and beyond:An introduction to the replica method and its applications. Singapore, 1987
[10] NEMATOLLAHI A F, RAHIMINEJAD A, VAHIDI B. A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization[J]. Applied Soft Computing, 2017, 59:596-621
[11] MIRJALILI S, MIRJALILI S M, HATAMLOU A. Multi-Verse optimizer:A nature-inspired algorithm for global optimization[J]. Neural Computing and Applications, 2016, 27(2):495-513
[12] PATEL V K, SAVSANI V J. Heat transfer search (HTS):A novel optimization algorithm[J]. Information Sciences, 2015, 324:217-246
[13] ZHAO W, WANG L, ZHANG Z. A novel atom search optimization for dispersion coefficient estimation in groundwater[J]. Future Generation Computer Systems, 2019, 91:601-610
[14] 魏良霄, 张婷, 党乐平, 等. 一种改进的遗传算法在间歇化工过程设计中的应用[J]. 化学工业与工程, 2020, 37(4):58-65 WEI Liangxiao, ZHANG Ting, DANG Leping, et al. Application of an improved genetic algorithm in the design of batch chemical process[J]. Chemical Industry and Engineering, 2020, 37(4):58-65(in Chinese)
[15] 贾思奇, 郄彦辉, 李煜彤, 等. 基于遗传-神经网络算法的含均匀腐蚀缺陷油气管线爆破压力预测研究[J]. 中国安全生产科学技术, 2020, 16(12):105-110 JIA Siqi, QIE Yanhui, LI Yutong, et al. Research on burst pressure prediction of oil and gas pipelines with uniform corrosion defects based on GA-BPNNs algorithm[J]. Journal of Safety Science and Technology, 2020, 16(12):105-110(in Chinese)
[16] 张松灿, 普杰信, 司彦娜, 等. 蚁群算法在移动机器人路径规划中的应用综述[J]. 计算机工程与应用, 2020, 56(8):10-19 ZHANG Songcan, PU Jiexin, SI Yanna, et al. Survey on application of ant colony algorithm in path planning of mobile robot[J]. Computer Engineering and Applications, 2020, 56(8):10-19(in Chinese)
[17] 朱炜, 刘斌, 侯海云, 等. 4种智能算法在相平衡数据拟合中的应用[J]. 化学工业与工程, 2019, 36(4):42-50 ZHU Wei, LIU Bin, HOU Haiyun, et al. Application of four intelligent algorithms in phase equilibrium data fitting[J]. Chemical Industry and Engineering, 2019, 36(4):42-50(in Chinese)
[18] 詹燕红. 海底油气集输管道的腐蚀问题分析及防治措施研究[J]. 清洗世界, 2021, 37(3):98-99 ZHAN Yanhong. Analysis of corrosion problem of submarine oil and gas gathering and transportation pipeline and research on prevention measures[J]. Cleaning World, 2021, 37(3):98-99(in Chinese)
[19] 周晶晶. 油气管道的腐蚀与防护技术研究[J]. 中国科技博览, 2014(36):30-30 ZHOU Jingjing. Research on corrosion and protection technology of oil and gas pipelines[J]. China Science and Technology Expo, 2014(36):30-30
[20] 崔铭伟. 多相流海管CO2内腐蚀及剩余强度研究[D]. 山东东营:中国石油大学(华东), 2014 CUI Mingwei. Study on CO2 internal corrosion and residual strength of multiphase offshore pipeline[D]. Shandong Dongying:China University of Petroleum (Huadong), 2014 (in Chinese)
[21] 丁鹏. 海底管线安全可靠性及风险评价技术研究[D]. 北京:中国石油大学, 2008 DING Peng. Research on safety reliability and risk assessment of submarine pipeline[D]. Beijing:China University of Petroleum, 2008 (in Chinese)
[22] 段继周, 刘超, 刘会莲, 等. 海洋水下设施生物污损及其控制技术研究进展[J]. 海洋科学, 2020, 44(8):162-177 DUAN Jizhou, LIU Chao, LIU Huilian, et al. Research progress of biofouling and its control technology in marine underwater facilities[J]. Marine Sciences, 2020, 44(8):162-177(in Chinese)
[23] 凌晓, 徐鲁帅, 高甲程, 等. 基于IFA-BPNN的长输管道外腐蚀速率预测[J]. 表面技术, 2021, 50(4):285-293 LING Xiao, XU Lushuai, GAO Jiacheng, et al. Prediction of external corrosion rate of oil pipeline based on improved IFA-BPNN[J]. Surface Technology, 2021, 50(4):285-293(in Chinese)
[24] 李海涛, 袁森. 基于遗传算法和BP神经网络的海洋工程材料腐蚀预测研究[J]. 海洋科学, 2020, 44(10):33-38 LI Haitao, YUAN Sen. Corrosion prediction of marine engineering materials based on genetic algorithm and BP neural network[J]. Marine Sciences, 2020, 44(10):33-38(in Chinese)
[25] 骆正山, 袁宏伟. 基于误差补偿的GM-RBF海底管道腐蚀预测模型[J]. 中国安全科学学报, 2018, 28(3):96-101 LUO Zhengshan, YUAN Hongwei. GM-RBF model based error compensation for prediction of submarine pipeline corrosion[J]. China Safety Science Journal, 2018, 28(3):96-101(in Chinese)
[26] EL-ABBASY M S, SENOUCI A, ZAYED T, et al. Artificial neural network models for predicting condition of offshore oil and gas pipelines[J]. Automation in Construction, 2014, 45:50-65
[27] 印翔, 黄一, 李恺强, 等. 基于粒子群优化算法的腐蚀预测灰色动态模型[J]. 腐蚀与防护, 2020, 41(1):18-22 YIN Xiang, HUANG Yi, LI Kaiqiang, et al. A dynamic grey model of corrosion prediction based on PSO arithemetic[J]. Corrosion & Protection, 2020, 41(1):18-22(in Chinese)
[28] 宋莹莹. 在役海底油气管道内腐蚀速率预测研究[D]. 西安:西安建筑科技大学, 2020 SONG Yingying. Research for internal corrosion rate prediction of submarine oil and gas pipelines in service[D]. Xi'an:Xi'an University of Architecture and Technology, 2020 (in Chinese)
[29] 陈永红, 苏永生, 胡平. 基于GA-LSSVM模型的管道腐蚀速率预测研究[J]. 材料保护, 2021, 54(1):63-67 CHEN Yonghong, SU Yongsheng, HU Ping. Research on the prediction of pipelines corrosion rate based on GA-LSSVM[J]. Materials Protection, 2021, 54(1):63-67(in Chinese)
[30] 张新生, 曹昕, 韩文超, 等. 基于参数优化GM-Markov模型的海底管道腐蚀预测[J]. 油气储运, 2020, 39(8):953-960 ZHANG Xinsheng, CAO Xin, HAN Wenchao, et al. Prediction of submarine pipeline corrosion based on parameter optimized GM-Markov model[J]. Oil & Gas Storage and Transportation, 2020, 39(8):953-960(in Chinese)
[31] 张新生, 张莹莹. 基于KPCA-ALO-WLSSVM的埋地管道外腐蚀速率预测[J]. 安全与环境学报, 2021, doi:10.13637/j.issn.1009-6094.2021.0275 ZHANG Xinsheng, ZHANG Yingying. Prediction of external corrosion rate of buried pipeline[J]. Journal of Safety and Environment, 2021, doi:10.13637/j.issn.1009-6094.2021.0275(in Chinese)
[32] 肖子雅, 刘升. 黄金正弦混合原子优化算法[J]. 微电子学与计算机, 2019, 36(6):21-25, 30 XIAO Ziya, LIU Sheng. Atom search optimization based on golden-sine algorithm[J]. Microelectronics & Computer, 2019, 36(6):21-25, 30(in Chinese)
[33] 李增刚, 王正彦, 孙敬成. 基于FPGA的手写数字BP神经网络研究与设计[J]. 计算机工程与应用, 2020, 56(17):251-257 LI Zenggang, WANG Zhengyan, SUN Jingcheng. Research and design of handwritten digital BP neural network based on FPGA[J]. Computer Engineering and Applications, 2020, 56(17):251-257(in Chinese)
[34] 李波, 张文泉, 马兰. 厚松散层薄基岩条件下矿井顶板涌水致灾因素分析及预测研究[J]. 山东科技大学学报(自然科学版), 2017, 36(6):39-46 LI Bo, ZHANG Wenquan, MA Lan. Influencing factors and prediction of mine water inrush disaster under thick unconsolidated layers and thin bedrock[J]. Journal of Shandong University of Science and Technology (Natural Science), 2017, 36(6):39-46(in Chinese)
[35] 董志贵, 王福林, 宋庆凤, 等. 基于BP神经网络的无约束优化方法[J]. 统计与决策, 2019, 35(1):79-82 DONG Zhigui, WANG Fulin, SONG Qingfeng, et al. An unconstrained optimization method based on BP neural network[J]. Statistics & Decision, 2019, 35(1):79-82(in Chinese)
[36] 朱广宇, 毕军, 钱大琳, 等. 一种多维度评价向量的排序模型及一致性证明[J]. 北京交通大学学报, 2007, 31(3):35-37, 49 ZHU Guangyu, BI Jun, QIAN Dalin, et al. A sequencing model to multi-dimensional evaluation vectors and its consistency proving[J]. Journal of Beijing Jiaotong University, 2007, 31(3):35-37, 49(in Chinese)
|