[1] WARSINGER D M, CHAKRABORTY S, TOW E W, et al. A review of polymeric membranes and processes for potable water reuse[J]. Progress in Polymer Science, 2018, 81:209-237
[2] 季伟, 李十中. 鼓泡超滤法用于木糖生产过程的探讨[J]. 化学工业与工程, 2007, 24(1):52-55 JI Wei, LI Shizhong. Application of gas sparging to the production process of xylose by ultrafiltration[J]. Chemical Industry and Engineering, 2007, 24(1):52-55(in Chinese)
[3] AHMED F, LALIA B S, KOCHKODAN V, et al. Electrically conductive polymeric membranes for fouling prevention and detection:A review[J]. Desalination, 2016, 391:1-15
[4] SHI X, TAL G, HANKINS N P, et al. Fouling and cleaning of ultrafiltration membranes:A review[J]. Journal of Water Process Engineering, 2014, 1:121-138
[5] KAIYA Y, ITOH Y, FUJITA K, et al. Study on fouling materials in the membrane treatment process for potable water[J]. Desalination, 1996, 106(1/2/3):71-77
[6] YUAN W, ZYDNEY A L. Humic acid fouling during ultrafiltration[J]. Environmental Science and Technology, 2000, 34(23):5043-5050
[7] EREN E, SARIHAN A, EREN B, et al. Preparation, characterization and performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier[J]. Journal of Membrane Science, 2015, 475:1-8
[8] ZHAO Y, LU J, LIU X, et al. Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide[J]. Journal of Colloid and Interface Science, 2016, 480:1-8
[9] CABASSUD C, LABORIE S, DURAND-BOURLIER L, et al. Air sparging in ultrafiltration hollow fibers:Relationship between flux enhancement, cake characteristics and hydrodynamic parameters[J]. Journal of Membrane Science, 2001, 181(1):57-69
[10] MERCIER M, FONADE C, LAFFORGUE-DELORME C. How slug flow can enhance the ultrafiltration flux in mineral tubular membranes[J]. Journal of Membrane Science, 1997, 128(1):103-113
[11] TAITEL Y, BARNEA D, DUKLER A E. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes[J]. AIChE Journal, 1980, 26(3):345-354
[12] MUTHUKUMARAN S, KENTISH S E, ASHOKKUMAR M, et al. Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration[J]. Journal of Membrane Science, 2005, 258(1/2):106-114
[13] CHAI X, KOBAYASHI T, FUJII N. Ultrasound effect on cross-flow filtration of polyacrylonitrile ultrafiltration membranes[J]. Journal of Membrane Science, 1998, 148(1):129-135
[14] 曲连续, 张犇, 张庆男, 等. PAN超滤膜的常压介质阻挡放电等离子体亲水改性[J]. 化学工业与工程, 2013, 30(1):38-41, 52 QU Lianxu, ZHANG Ben, ZHANG Qingnan, et al. Hydrophilic modification of polyacrylonitrile ultrafiltration membrane via atmospheric dielectric barrier discharge(DBD) plasma[J]. Chemical Industry and Engineering, 2013, 30(1):38-41, 52(in Chinese)
[15] 郭春刚, 吕经烈, 张召才, 等. PVDF-TiO2复合中空纤维膜的制备与表征[J]. 化学工业与工程, 2013, 30(6):5-10 GUO Chungang, LYU Jinglie, ZHANG Zhaocai, et al. Preparation and characterization of PVDF-TiO2 composite hollow fiber membrane[J]. Chemical Industry and Engineering, 2013, 30(6):5-10(in Chinese)
[16] CUI Z, WRIGHT K I T. Gas-liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions[J]. Journal of Membrane Science, 1994, 90(1/2):183-189
[17] TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques:A review[J]. Advances in Colloid and Interface Science, 2017, 246:40-51
[18] BATAGODA J H, HEWAGE S D A, MEEGODA J N. Nano-ozone bubbles for drinking water treatment[J]. Journal of Environmental Engineering and Science, 2019, 14(2):57-66
[19] REUTER F, LAUTERBORN S, METTIN R, et al. Membrane cleaning with ultrasonically driven bubbles[J]. Ultrasonics Sonochemistry, 2017, 37:542-560
[20] DENG S, JOTHINATHAN L, CAI Q, et al. FeOx@GAC catalyzed microbubble ozonation coupled with biological process for industrial phenolic wastewater treatment:Catalytic performance, biological process screening and microbial characteristics[J]. Water Research, 2021, doi:10.1016/j.watres.2020.116687
[21] WANG Y, WANG J, DING Y, et al. In situ generated micro-bubbles enhanced membrane antifouling for separation of oil-in-water emulsion[J]. Journal of Membrane Science, 2021, doi:10.1016/j.memsci.2020.119005
[22] KHALED A A A, SUN C, HUA L, et al. Colloidal properties of air, oxygen, and nitrogen nanobubbles in water:Effects of ionic strength, natural organic matters, and surfactants[J]. Environmental Engineering Science, 2018, 35(7):720-727
[23] WU Z, CHEN H, DONG Y, et al. Cleaning using nanobubbles:Defouling by electrochemical generation of bubbles[J]. Journal of Colloid and Interface Science, 2008, 328(1):10-14
[24] DAYARATHNE H N P, CHOI J, JANG A. Enhancement of cleaning-in-place (CIP) of a reverse osmosis desalination process with air micro-nano bubbles[J]. Desalination, 2017, 422:1-4
[25] WANG J, FANE A, CHEW J W. Effect of bubble characteristics on critical flux in the microfiltration of particulate foulants[J]. Journal of Membrane Science, 2017, 535:279-293
[26] MEEGODA J N, HEWAGE S A, BATAGODA J H. Application of the diffused double layer theory to nanobubbles[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2019, 35(37):12100-12112
[27] GAO W, LIANG H, MA J, et al. Membrane fouling control in ultrafiltration technology for drinking water production:A review[J]. Desalination, 2011, 272(1/2/3):1-8
[28] JONES K L, O'MELIA C R. Protein and humic acid adsorption onto hydrophilic membrane surfaces:Effects of pH and ionic strength[J]. Journal of Membrane Science, 2000, 165(1):31-46
[29] 孙丽华, 俞天敏, 田海龙, 等. 典型有机物与超滤膜界面作用及膜污染机制研究[J]. 环境科学学报, 2016, 36(2):530-536 SUN Lihua, YU Tianmin, TIAN Hailong, et al. Interaction of typical organic matters on ultrafiltration membrane and the mechanism of membrane fouling[J]. Acta Scientiae Circumstantiae, 2016, 36(2):530-536(in Chinese)
[30] TIAN J, XU Y, CHEN Z, et al. Air bubbling for alleviating membrane fouling of immersed hollow-fiber membrane for ultrafiltration of river water[J]. Desalination, 2010, 260(1/2/3):225-230
[31] LIU S, OSHITA S, KAWABATA S, et al. Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2016, 32(43):11295-11302
|