[1] 曾小峰, 陈耀龙. 2016中国痛风诊疗指南[J]. 浙江医学, 2017, 39(21):1823-1832 ZENG Xiaofeng, CHEN Yaolong. 2016 China gout diagnosis and treatment Guide[J]. Zhejiang Medical Journal, 2017, 39(21):1823-1832(in Chinese)
[2] RICHETTE P. Gout[J]. The Lancet, 2010, 375(9711):318-328
[3] PRYWER J, OLSZYNSKI M. Bacterially induced formation of infectious urinary stones:Recent developments and future challenges[J]. Current Medicinal Chemistry, 2017, 24(3):292-311
[4] JIA Z, DENG Z, LI L. Biomineralized materials as model systems for structural composites:3D architecture[J]. Advanced Materials (Deerfield Beach, Fla), 2022, doi:10.1002/adma.202106259
[5] HYDE S T, MELDRUM F C. Starfish grow extraordinary crystals[J]. Science, 2022, 375(6581):615-616
[6] LANG A, POLISHCHUK I, CONFALONIERI G, et al. Tuning the magnetization of manganese (Ⅱ) carbonate by intracrystalline amino acids[J]. Advanced Materials (Deerfield Beach, Fla), 2022, doi:10.1002/adma.202201652
[7] SCHOEPPLER V, COOK P K, DETLEFS C, et al. Untangling the mechanisms of lattice distortions in biogenic crystals across scales[J]. Advanced Materials (Deerfield Beach, Fla), 2022, doi:10.1002/adma.202200690
[8] HOU D, ZHOU G, ZHENG M. Conch shell structure and its effect on mechanical behaviors[J]. Biomaterials, 2004, 25(4):751-756
[9] SONG F, BAI Y L. Nanostructure of nacre and its mechanical effects[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 3(3/4):257-260
[10] STIFLER C A, KILLIAN C E, GILBERT P U P A. Evidence for a liquid precursor to biomineral formation[J]. Crystal Growth & Design, 2021, 21(12):6635-6641
[11] GOWER L B, ODOM D J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process[J]. Journal of Crystal Growth, 2000, 210(4):719-734
[12] NUDELMAN F, SHIMONI E, KLEIN E, et al. Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera:An environmental- and cryo-scanning electron microscopy study[J]. Journal of Structural Biology, 2008, 162(2):290-300
[13] 马凤宁, 施国伟, 张跃辉, 等. 肾结石成分与患者年龄及性别的关系分析[J]. 中华泌尿外科杂志, 2013, 34(7):530-532 MA Fengning, SHI Guowei, ZHANG Yuehui, et al. Analysis of the relationship between the composition of stones and the age and sex in patients with kidney stones[J]. Chinese Journal of Urology, 2013, 34(7):530-532(in Chinese)
[14] ADELMAN A, SHILO Y, MODAI J, et al. Do organic substances act as a degradable binding matrix in calcium oxalate kidney stones?[J]. BMC Urology, 2021, doi:10.1186/s12894-021-00818-3
[15] HALL V M, COX K A, SOURS R E, et al. Urochrome pigment in uric acid crystals[J]. Chemistry of Materials, 2016, 28(11):3862-3869
[16] Qin W, Wan Q, Ma Y, et al. Manifestation and mechanisms of abnormal mineralization in teeth[J]. ACS Biomaterials Science & Engineering, 2021, doi:10.1021/acsbiomaterials.1c00592
[17] BUSCH S, SCHWARZ U, KNIEP R. Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite-gelatine composites[J]. Chemistry of Materials, 2001, 13(10):3260-3271
[18] GIBBS J W. An anthology of nineteenth-century american science writing[M]. London:Anthem Press, 2012
[19] TONG T, WALLACE A F, ZHAO S, et al. Mineral scaling in membrane desalination:Mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes[J]. Journal of Membrane Science, 2019, 579:52-69
[20] ERDEMIR D, LEE A Y, MYERSON A S. Nucleation of crystals from solution:Classical and two-step models[J]. Accounts of Chemical Research, 2009, 42(5):621-629
[21] GALKIN O, PAN W, FILOBELO L, et al. Two-step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers[J]. Biophysical Journal, 2007, 93(3):902-913
[22] GEBAUER D, VÖLKEL A, CÖLFEN H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909):1819-1822
[23] GEBAUER D, CöLFEN H. Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6(6):564-584
[24] RUIZ-AGUDO E, BURGOS-CARA A, RUIZ-AGUDO C, et al. A non-classical view on calcium oxalate precipitation and the role of citrate[J]. Nature Communications, 2017, doi:10.1038/s41467-017-00756-5
[25] QIU S, WIERZBICKI A, SALTER E A, et al. Modulation of calcium oxalate monohydrate crystallization by citrate through selective binding to atomic steps[J]. Journal of the American Chemical Society, 2005, 127(25):9036-9044
[26] WOODRUFF D P. How does your crystal grow? A commentary on Burton, Cabrera and Frank (1951) ‘The growth of crystals and the equilibrium structure of their surfaces’[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, doi:10.1098/rsta.2014.0230
[27] KIM D, OLYMPIOU C, MCCOY C P, et al. Time-resolved dynamics of struvite crystallization:Insights from the macroscopic to molecular scale[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2020, 26(16):3555-3563
[28] UWAHA M. Introduction to the BCF theory[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2):58-68
[29] 王一平, 朱丽, 李韡, 胡彤宇, 廖明锋, 冀秀玲. 仿生合成技术及其应用研究[J]. 化学工业与工程, 2001, 18(5):272-278 WANG Yiping, ZHU Li, LI Wei, et al. Biomimetic synthesis technology and its application researches[J]. Chemical Industry and Engineering, 2001, 18(5):272-278(in Chinese)
[30] SHTUKENBERG A G, WARD M D, KAHR B. Crystal growth with macromolecular additives[J]. Chemical Reviews, 2017, 117(24):14042-14090
[31] 汤伟伟, 李斯, 龚俊波. 有机晶体成核分子机理研究进展[J]. 化学工业与工程, 2018, 35(3):2-11 TANG Weiwei, LI Si, GONG Junbo. Research progress on molecular mechanism of nucleation of organic crystals[J]. Chemical Industry and Engineering, 2018, 35(3):2-11(in Chinese)
[32] 邢晓红, 欧阳金波, 周利民, 等. 限域空间内的结晶研究进展[J]. 化学工业与工程, 2022, 39(5):39-48 XING Xiaohong, OUYANG Jinbo, ZHOU Limin, et al. Research progress of crystallization in confined space[J]. Chemical Industry and Engineering, 2022, 39(5):39-48(in Chinese)
[33] 于增瑞, 王永莉, 周靖, 等. 有机晶体缺陷的研究进展[J]. 化学工业与工程, 2020, 37(2):19-29 YU Zengrui, WANG Yongli, ZHOU Jing, et al. Progress on defects in organic crystal[J]. Chemical Industry and Engineering, 2020, 37(2):19-29(in Chinese)
[34] QIU S, ORME C A. Dynamics of biomineral formation at the near-molecular level[J]. Chemical Reviews, 2008, 108(11):4784-4822
[35] DE YOREO J J, VEKILOV P G. Principles of crystal nucleation and growth[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1):57-93
[36] CLAYMAN R V. Modulators of urinary stone formation[J]. Journal of Urology, 2005, doi:10.1097/01.ju.0000149869.80976.9e
[37] VERKOELEN C F. Crystal retention in renal stone disease:A crucial role for the glycosaminoglycan hyaluronan?[J]. Journal of the American Society of Nephrology:JASN, 2006, 17(6):1673-1687
[38] GOHEL M D I, SHUM D K Y, TAM P C. Electrophoretic separation and characterization of urinary glycosaminoglycans and their roles in urolithiasis[J]. Carbohydrate Research, 2007, 342(1):79-86
[39] WEAVER M L, QIU S R, HOYER J R, et al. Improved model for inhibition of pathological mineralization based on citrate-calcium oxalate monohydrate interaction[J]. Chemphyschem:A European Journal of Chemical Physics and Physical Chemistry, 2006, 7(10):2081-2084
[40] WANG L, DE YOREO J J, GUAN X, et al. Constant composition studies verify the utility of the cabrera-vermilyea (C-V) model in explaining mechanisms of calcium oxalate monohydrate crystallization[J]. Crystal Growth & Design, 2006, 6(8):1769-1775
[41] CHUNG J, GRANJA I, TAYLOR M G, et al. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition[J]. Nature, 2016, 536(7617):446-450
[42] CHUNG J, SOSA R, RIMER J D. Elucidating the effects of polyprotic acid speciation in calcium oxalate crystallization[J]. Crystal Growth & Design, 2017, 17(8):4280-4288
[43] RIMER J D, KOLBACH-MANDEL A M, WARD M D, et al. The role of macromolecules in the formation of kidney stones[J]. Urolithiasis, 2017, 45(1):57-74
[44] WANG L, QIU S, ZACHOWICZ W, et al. Modulation of calcium oxalate crystallization by linear aspartic acid-rich peptides[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2006, 22(17):7279-7285
[45] CHO K R, SALTER E A, DE YOREO J J, et al. Impact of chiral molecules on the formation of biominerals:A calcium oxalate monohydrate example[J]. Crystal Growth & Design, 2012, 12(12):5939-5947
[46] GROHE B, O'YOUNG J, IONESCU D A, et al. Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide[J]. Journal of the American Chemical Society, 2007, 129(48):14946-14951
[47] VISWANATHAN P, RIMER J D, KOLBACH A M, et al. Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein[J]. Urological Research, 2011, 39(4):269-282
[48] SHENG X, JUNG T, WESSON J A, et al. Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(2):267-272
[49] KÖNIGSBERGER E, KÖNIGSBERGER L C. Thermodynamic modeling of crystal deposition in humans[J]. Pure and Applied Chemistry, 2001, 73(5):785-797
[50] RINAUDO C, BOISTELLE R. Theoretical and experimental growth morphologies of sodium urate crystals[J]. Journal of Crystal Growth, 1982, 57(2):432-442
[51] CHIH M H, LEE H L, LEE T. The culprit of gout:Triggering factors and formation of monosodium urate monohydrate[J]. CrystEngComm, 2016, 18(2):290-297
[52] PERRIN C M, DOBISH M A, VAN KEUREN E, et al. Monosodium urate monohydrate crystallization[J]. CrystEngComm, 2011, 13(4):1111-1117
[53] LI M, LI S, TANG W, et al. Understanding the crystallization pathway of monosodium urate monohydrate in a biomimetic matrix[J]. Crystal Growth & Design, 2020, 20(2):804-812
[54] ZELLELOW A Z, ABIYE M, FINK D A, et al. Doping uric acid crystals. 1. uric acid dihydrate[J]. Crystal Growth & Design, 2010, 10(8):3340-3347
[55] ZELLELOW A Z, COX K A, FINK D A, et al. Doping uric acid crystals. 2. anhydrous uric acid[J]. Crystal Growth & Design, 2010, 10(8):3348-3354
[56] SOURS R E, FINK D A, SWIFT J A. Dyeing uric acid crystals with methylene blue[J]. Journal of the American Chemical Society, 2002, 124(29):8630-8636
[57] FINK D A, SOURS R E, SWIFT J A. Modulated uric acid crystal growth in the presence of acridine dyes[J]. Chemistry of Materials, 2003, 15(14):2718-2723
[58] SOURS R E, FINK D A, COX K A, et al. Uric acid dye inclusion crystals[J]. Molecular Crystals and Liquid Crystals, 2005, 440(1):187-193
[59] LIU F, HOOKS D E, LI N, et al. Molecular crystal mechanical properties altered via dopant inclusion[J]. Chemistry of Materials, 2020, 32(9):3952-3959
[60] LIU F, HOOKS D E, LI N, et al. Mechanical properties of anhydrous and hydrated uric acid crystals[J]. Chemistry of Materials, 2018, 30(11):3798-3805
[61] LIU Y, JING J, OU C, et al. Self-suppression from metabolin with a precursor in pathology crystallization of gout[J]. CrystEngComm, 2019, 21(25):3774-3778
[62] ZHOU D, JIAO S, ZHANG P, et al. Elucidating the mechanism of nucleation inhibition of pathology crystallization of gout based on the evidence from amorphous form and in solution[J]. RSC Advances, 2022, 12(35):22574-22580
[63] MENG Y, QI Z, JIANG H, et al. Restrained MSUM crystallization via hydrogel composited membrane based platform for gout prevention and control[J]. Chemical Engineering Journal, 2022, doi:10.1016/j.cej.2022.138155
[64] RIMER J D, AN Z, ZHU Z, et al. Crystal growth inhibitors for the prevention of L-cystine kidney stones through molecular design[J]. Science, 2010, 330(6002):337-341
[65] LIU Y, CHENG R, OU C, et al. Acetate:An alcohol metabolite as a growth promoter of pathological crystallization of gout[J]. Crystal Growth & Design, 2020, 20(5):2842-2846
[66] DA A, REN A, CHENG R, et al. Opposite effects of cations in enhancing and suppressing nucleation in the pathological crystallization of gout[J]. CrystEngComm, 2021, 23(47):8411-8417
[67] LI M, HAN D, GONG J. What roles do alkali metal ions play in the pathological crystallization of uric acid?[J]. CrystEngComm, 2022, 24(20):3749-3761
[68] PAREKH. In vitro growth and inhibition studies of monosodium urate monohydrate crystals by different herbal extracts[J]. American Journal of Infectious Diseases, 2009, 5(3):225-230
[69] OZONO C, HIRASAWA I, KOHORI F. Shape change and growth behavior of monosodium urate monohydrate in a gout model[J]. Chemical Engineering & Technology, 2017, 40(7):1231-1234
[70] MATSUMOTO M, WADA Y, OTSU R, et al. Controlling nucleation and crystal growth during reactive crystallization of monosodium urate monohydrate from simulated synovial fluid by N2 fine bubble injection[J]. Journal of Crystal Growth, 2020, doi:10.1039/c8cc10050k
[71] MOLLOY R G E, SUN W, CHEN J, et al. Structure and cleavage of monosodium urate monohydrate crystals[J]. Chemical Communications, 2019, 55(15):2178-2181
[72] GONZALEZ R D, WHITING B M, CANALES B K. The history of kidney stone dissolution therapy:50 years of optimism and frustration with renacidin[J]. Journal of Endourology, 2012, 26(2):110-118
[73] CINI R, CHINDAMO D, CATENACCIO M, et al. Dissolution of calcium pyrophosphate crystals by polyphosphates:An in vitro and ex vivo study[J]. Annals of the Rheumatic Diseases, 2001, 60(10):962-967
[74] NING Y, ARMES S P. Efficient occlusion of nanoparticles within inorganic single crystals[J]. Accounts of Chemical Research, 2020, 53(6):1176-1186
[75] PFUND L Y, PRICE C P, FRICK J J, et al. Controlling pharmaceutical crystallization with designed polymeric heteronuclei[J]. Journal of the American Chemical Society, 2015, 137(2):871-875
[76] ZUOXUAN Z, SI L, WEIWEI T, et al. 人体生物矿化与病态结晶研究进展[J]. Chinese Science Bulletin, 2022, doi:10.1007/978-3-540-74761-1_2
[77] MARKOV I V. Nucleation at surfaces[M]//Springer Handbook of Crystal Growth. Berlin, Heidelberg:Springer Berlin Heidelberg, 2010:17-52
[78] ZIBLAT R, FARGION I, LEISEROWITZ L, et al. Spontaneous formation of two-dimensional and three-dimensional cholesterol crystals in single hydrated lipid bilayers[J]. Biophysical Journal, 2012, 103(2):255-264
[79] EGAN T J, CHEN J Y J, DE VILLIERS K A, et al. Haemozoin (β-haematin) biomineralization occurs by self-assembly near the lipid/water interface[J]. FEBS Letters, 2006, 580(21):5105-5110
[80] GEORGIOU P G, MARTON H L, BAKER A N, et al. Polymer self-assembly induced enhancement of ice recrystallization inhibition[J]. Journal of the American Chemical Society, 2021, 143(19):7449-7461
[81] XIA Z, WANG L, HE G, et al. Morphology regulation of monosodium urate monohydrate crystals via fabricated uniform hydrogel slices[J]. Crystal Research and Technology, 2020, doi:10.1016/j.cis.2020.102230
[82] FAUSTINO C M C, LEMOS S M C, MONGE N, et al. A scope at antifouling strategies to prevent catheter-associated infections[J]. Advances in Colloid and Interface Science, 2020, doi:10.1021/acsabm.2c00586
[83] DURAND H, WHITELEY A, MAILLEY P, et al. Combining topography and chemistry to produce antibiofouling surfaces:A review[J]. ACS Applied Bio Materials, 2022, doi:10.1089/end.2007.0218
[84] CAUDA F, CAUDA V, FIORI C, et al. Heparin coating on ureteral Double J stents prevents encrustations:An in vivo case study[J]. Journal of Endourology, 2008, 22(3):465-472
[85] TENKE P, RIEDL C R, JONES G L, et al. Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy[J]. International Journal of Antimicrobial Agents, 2004, 23,67-74
[86] TENKE P, RIEDL C R, JONES G L, et al. Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy[J]. International Journal of Antimicrobial Agents, 2004, 23:67-74
[87] WEI Q, BECHERER T, MUTIHAC R C, et al. Multivalent anchoring and cross-linking of mussel-inspired antifouling surface coatings[J]. Biomacromolecules, 2014, 15(8):3061-3071
[88] 张嘉希, 黄赤兵, 许晓婷, 等. 带双线输尿管支架管在老年男性上尿路手术中的应用[J]. 中华老年多器官疾病杂志, 2017, 16(7):531-532 ZHANG Jiaxi, HUANG Chibing, XU Xiaoting, et al. Application of double-line ureteral stent in upper urinary tract surgery of elderly men[J]. Chinese Journal of Multiple Organ Diseases in the Elderly, 2017, 16(7):531-532(in Chinese)
[89] 叶卫东, 何荣通. 带双线输尿管支架管在上尿路手术中的应用效果分析[J]. 当代医学, 2012, 18(22):110-110 YE Weidong, HE Rongtong. Analysis of application effect of double-line ureteral stent in upper urinary tract surgery[J]. Contemporary Medicine, 2012, 18(22):110-110(in Chinese)
[90] 丁国庆, 芮雪芳, 张大宏, 等. 上尿路手术中腹腔镜直视下双J导管的放置方法[J]. 中华外科杂志, 2007, 45(4):287-288 DING Guoqing, RUI Xuefang, ZHANG Dahong, et al. Placement method of double J catheter under laparoscopy in upper urinary tract surgery[J]. Chinese Journal of Surgery, 2007, 45(4):287-288(in Chinese)
[91] 李志坚, 毛亚南, 杨诚, 等. 双J管内引流在上尿路手术中的应用[J]. 临床外科杂志, 2002(S1):50-51 LI Zhijian, MAO Yanan, YANG Cheng, et al. An application of double J tube internal drainage to the operation of upper urinary tract(Report of 104 cases)[J]. Journal of Clinical Surgery, 2002(S1):50-51(in Chinese)
[92] 高文喜, 谈太生, 詹呜. 双J支架管和肾造瘘管在复杂上尿路手术中的应用[J]. 临床泌尿外科杂志, 1997, 12(2):118-118 GAO Wenxi, TAN Taisheng, ZHAN Wu. Application of double J stent tube and nephrostomy tube in complicated upper urinary tract surgery[J]. Journal of Clinaical Urology, 1997, 12(2):118-118(in Chinese)
[93] CHEW B H, CADIEUX P A, REID G, et al. In-vitro activity of triclosan-eluting ureteral stents against common bacterial uropathogens[J]. Journal of Endourology, 2006, 20(11):949-958
[94] QIAN G, ZHANG L, LIU X, et al. Silver-doped bioglass modified scaffolds:A sustained antibacterial efficacy[J]. Materials Science and Engineering:C, 2021, 129:112425
[95] CHAKRAVARTI A, GANGODAWILA S, LONG MICHAEL J, et al. An electrified catheter to resist encrustation by proteus mirabilis biofilm[J]. The Journal of Urology, 2005, 174(3):1129-1132
[96] EPSTEIN A K, WONG T S, BELISLE R A, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33):13182-13187
[97] MACCALLUM N, HOWELL C, KIM P, et al. Liquid-infused silicone as a biofouling-free medical material[J]. ACS Biomaterials Science & Engineering, 2015, 1(1):43-51
[98] LAVIELLE N, ASKER D, HATTON B D. Lubrication dynamics of swollen silicones to limit long term fouling and microbial biofilms[J]. Soft Matter, 2021, 17(4):936-946
[99] WU Q, LIU D, CHEN W, et al. Liquid-like layer coated intraocular lens for posterior capsular opacification prevention[J]. Applied Materials Today, 2021, doi:10.1007/s11998-021-00559-w
[100] SETH M, JANA S. Fabrication and multifunctional properties of fluorine-free durable nickel stearate based superhydrophobic cotton fabric[J].Journal of Coatings Technology and Research, 2022, 19(3):813-827
[101] SONG L, SUN L, ZHAO J, et al. Synergistic superhydrophobic and photodynamic cotton textiles with remarkable antibacterial activities[J]. ACS Applied Bio Materials, 2019, 2(7):2756-2765
[102] MAGYAR A, ARTHANAREESWARAN V K A, SOóS L, et al. Does micropattern (sharklet) on urinary catheter surface reduce urinary tract infections? Results from phase I randomized open label interventional trial[J]. European Urology Supplements, 2017, 16(3):e146-e148
|