[1] 张建军, 钱帅, 高缘. 晶型药物研发理论与应用[M]. 北京:化学工业出版社, 2019
[2] Abbott laboratories[N]. PR Newswire, 1998-04-17
[3] European Medicines Agency. Scientific conclusions and grounds for the amendment of the marketing authorisation of neupro presented by the EMEA.[EB]. 2009, Retrieved from https://www.ema.europa.eu/en/documents/scientific-conclusion/neupro-h-c-626-ii-24-epar-scientific-conclusion-variation_en.pdf (2022-12-07)
[4] HERLACH D. Metastable solids from undercooled melts[M]. Oxford:Elsevier Science Ltd, 2007
[5] DEBENEDETTI P G, STILLINGER F H. Supercooled liquids and the glass transition[J]. Nature, 2001, 410(6825):259-267
[6] KOFLER L. Mikroskopische methoden in der mikrochemie[J]. Mikrochemie Vereinigt Mit Mikrochimica Acta, 1951, 36(1):283-290
[7] KUHNERT-BRANDSTÄTTER M. Thermomicroscopy in the analysis of pharmaceuticals[M]. Oxford:Pergamon Press, 1971
[8] CHEN S, XI H, YU L. Cross-nucleation between ROY polymorphs[J]. Journal of the American Chemical Society, 2005, 127(49):17439-17444
[9] SZTATISZ J, GÁL S, FODOR L, et al. Thermal investigations on the crystallization of sorbitol[J]. Journal of Thermal Analysis, 1977, 12(3):351-360
[10] QUINQUENET S, OLLIVON M, GRABIELLE-MADELMONT C, et al. Polimorphism of hydrated sorbitol[J]. Thermochimica Acta, 1988, 125:125-140
[11] YU L. Growth rings in d-sorbitol spherulites:Connection to concomitant polymorphs and growth kinetics[J]. Crystal Growth & Design, 2003, 3(6):967-971
[12] YU L. Nucleation of one polymorph by another[J]. Journal of the American Chemical Society, 2003, 125(21):6380-6381
[13] LI X, OU X, RONG H, et al. The twelfth solved structure of ROY:Single crystals of Y04 grown from melt microdroplets[J]. Crystal Growth & Design, 2020, 20(11):7093-7097
[14] CHEN S, GUZEI I A, YU L. New polymorphs of ROY and new record for coexisting polymorphs of solved structures[J]. Journal of the American Chemical Society, 2005, 127(27):9881-9885
[15] GUSHURST K S, NYMAN J, BOERRIGTER S X M. The PO13 crystal structure of ROY[J]. CrystEngComm, 2019, 21(9):1363-1368
[16] DI MARTINO P, CONFLANT P, DRACHE M, et al. Preparation and physical characterization of forms Ⅱ and Ⅲ of paracetamol[J]. Journal of Thermal Analysis, 1997, 48(3):447-458
[17] SHTUKENBERG A G, TAN M, VOGT-MARANTO L, et al. Melt crystallization for paracetamol polymorphism[J]. Crystal Growth & Design, 2019, 19(7):4070-4080
[18] SHTUKENBERG A, FREUNDENTHAL J, GUNN E, et al. Glass-crystal growth mode for testosterone propionate[J]. Crystal Growth & Design, 2011, 11(10):4458-4462
[19] SHTUKENBERG A G, HU C, ZHU Q, et al. The third ambient aspirin polymorph[J]. Crystal Growth & Design, 2017, 17(6):3562-3566
[20] SHTUKENBERG A G, ZHU Q, CARTER D J, et al. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs[J]. Chemical Science, 2017, 8(7):4926-4940
[21] YANG J, HU C, ZHU X, et al. DDT polymorphism and the lethality of crystal forms[J]. Angewandte Chemie (International Ed in English), 2017, 56(34):10165-10169
[22] MCCONNELL J F, COMPANY F Z. N-(2,3-xylyl) anthranilic acid, C15H15NO2 mefenamic acid[J]. Crystal Structure Communications, 1976, 5:861-864
[23] KRISHNA MURTHY H M, BHAT T N, VIJAYAN M. Structure of a new crystal form of 2-{[3-(trifluoromethyl)phenyl] amino}benzoic acid (flufenamic acid)[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1982, 38(1):315-317
[24] LÓPEZ-MEJÍAS V, KAMPF J W, MATZGER A J. Nonamorphism in flufenamic acid and a new record for a polymorphic compound with solved structures[J]. Journal of the American Chemical Society, 2012, 134(24):9872-9875
[25] PANG Y, BUANZ A, GAISFORD S, et al. Monitoring polymorphic phase transitions in flufenamic acid amorphous solid dispersions using hyphenated X-ray diffraction-differential scanning calorimetry[J]. Molecular Pharmaceutics, 2022, 19(5):1477-1487
[26] MARIA T M R, CASTRO R A E, SILVA M R, et al. Polymorphism and melt crystallisation of racemic betaxolol, a β-adrenergic antagonist drug[J].Journal of Thermal Analysis and Calorimetry, 2013, 111(3):2171-2178
[27] ZHANG S, LEE T W Y, CHOW A H L. Crystallization of itraconazole polymorphs from melt[J]. Crystal Growth & Design, 2016, 16(7):3791-3801
[28] CICILIATI M A, EUSéBIO M E S, SILVA M R, et al. Metoprolol:Solid forms of a top selling antihypertensive[J]. CrystEngComm, 2019, 21(29):4319-4328
[29] OU X, LI X, RONG H, et al. A general method for cultivating single crystals from melt microdroplets[J]. Chemical Communications (Cambridge, England), 2020, 56(69):9950-9953
[30] KOFLER L, KOFLER A. Die polymorphie des nicotinsäureamids[J]. Berichte Der Deutschen Chemischen Gesellschaft (A and B Series), 1943, 76(3):246-248
[31] HINO T, FORD J L, POWELL M W, et al. Assessment of nicotinamide polymorphs by differential scanning calorimetry[J]. Thermochimica Acta, 2001, 374(1):85-92
[32] WRIGHT W B, KING G S D. The crystal structure of nicotinamide[J]. Acta Crystallographica, 1954, 7(3):283-288
[33] LI J J, BOURNE S A, CAIRA M R. New polymorphs of isonicotinamide and nicotinamide[J]. Chemical Communications (Cambridge, England), 2011, 47(5):1530-1532
[34] LI X, OU X, WANG B, et al. Rich polymorphism in nicotinamide revealed by melt crystallization and crystal structure prediction[J]. Communications Chemistry, 2020, doi:10.1038/s42004-020-00401-1
[35] VRE?ER F, SR?I? S, ŠMID-KORBAR J. Investigation of piroxicam polymorphism[J]. International Journal of Pharmaceutics, 1991, 68(1/2/3):35-41
[36] YAO C, GUZEI I A, JIN Y, et al. Polymorphism of piroxicam:New polymorphs by melt crystallization and crystal structure prediction[J]. Crystal Growth & Design, 2020, 20(12):7874-7881
[37] ZHU X, HU C, ERRIAH B, et al. Imidacloprid crystal polymorphs for disease vector control and pollinator protection[J]. Journal of the American Chemical Society, 2021, 143(41):17144-17152
[38] YANG J, HU C, REITER E, et al. Ambient L-lactic acid crystal polymorphism[J]. CrystEngComm, 2021, 23(14):2644-2647
[39] BORKA L. The polymorphism of indomethacine. New modifications, their melting behavior and solubility[J]. Acta Pharmaceutica Suecica, 1974, 11(3):295-303
[40] LIGHTOWLER M, LI S, OU X, et al. Indomethacin polymorph δ revealed to be two plastically bendable crystal forms by 3D electron diffraction:Correcting a 47-year-old misunderstanding[J]. Angewandte Chemie International Edition, 2022, doi:10.1002/anie.202114985
[41] LU M, TAYLOR L S. Vemurafenib:A tetramorphic system displaying concomitant crystallization from the supercooled liquid[J]. Crystal Growth & Design, 2016, 16(10):6033-6042
[42] LI S, LIGHTOWLER M, OU X, et al. Direct structure determination of vemurafenib polymorphism from compact spherulites using 3D electron diffraction[J]. Communications Chemistry, 2022, doi:10.1038/s42004-022-00804-2
[43] FELLAH N, SHTUKENBERG A G, CHAN E J, et al. Disorderly conduct of benzamide Ⅳ:Crystallographic and computational analysis of high entropy polymorphs of small molecules[J]. Crystal Growth & Design, 2020, 20(4):2670-2682
[44] LÉVESQUE A, MARIS T, WUEST J D. ROY reclaims its crown:New ways to increase polymorphic diversity[J]. Journal of the American Chemical Society, 2020, 142(27):11873-11883
[45] ZHU Q, SHTUKENBERG A G, CARTER D J, et al. Resorcinol crystallization from the melt:A new ambient phase and new riddles[J]. Journal of the American Chemical Society, 2016, 138(14):4881-4889
[46] VAN DUONG T, LVDEKER D, VAN BOCKSTAL P J, et al. Polymorphism of indomethacin in semicrystalline dispersions:Formation, transformation, and segregation[J]. Molecular Pharmaceutics, 2018, 15(3):1037-1051
[47] GROOFF D, DE VILLIERS M M, LIEBENBERG W. Thermal methods for evaluating polymorphic transitions in nifedipine[J]. Thermochimica Acta, 2007, 454(1):33-42
[48] GUNN E, GUZEI I A, CAI T, et al. Polymorphism of nifedipine:Crystal structure and reversible transition of the metastable β polymorph[J]. Crystal Growth & Design, 2012, 12(4):2037-2043
[49] GUI Y, YAO X, GUZEI I A, et al. A mechanism for reversible solid-state transitions involving nitro torsion[J]. Chemistry of Materials, 2020, 32(18):7754-7765
[50] BURGER A, KOLLER K T. Polymorphism and pseudopolymorphism on nifedipine[J]. Scientia Pharmaceutica, 1996, 64:293-301
[51] ASKIN S, COCKCROFT J K, PRICE L S, et al. Olanzapine form Ⅳ:Discovery of a new polymorphic form enabled by computed crystal energy landscapes[J]. Crystal Growth & Design, 2019, 19(5):2751-2757
[52] YAM N, LI X, JASTI B R. Interactions of topiramate with polyethylene glycol 8000 in solid state with formation of new polymorph[J]. International Journal of Pharmaceutics, 2011, 411(1/2):86-91
[53] DE ARMAS H N, PEETERS O M, VAN DEN MOOTER G, et al. Polymorphism of alprazolam (xanax®):A review of its crystalline phases and identification, crystallographic characterization, and crystal structure of a new polymorph (form Ⅲ)[J]. Journal of Pharmaceutical Sciences, 2007, 96(5):1114-1130
[54] MAHIEU A, WILLART J F, DUDOGNON E, et al. On the polymorphism of griseofulvin:Identification of two additional polymorphs[J]. Journal of Pharmaceutical Sciences, 2013, 102(2):462-468
[55] OU X, LI S, CHEN Y, et al. Polymorphism in griseofulvin:New story between an old drug and polyethylene glycol[J]. Crystal Growth & Design, 2022, 22(6):3778-3785
[56] SKOMSKI D, VARSOLONA R J, SU Y C, et al. Islatravir case study for enhanced screening of thermodynamically stable crystalline anhydrate phases in pharmaceutical process development by hot melt extrusion[J]. Molecular Pharmaceutics, 2020, 17(8):2874-2881
[57] YAO X, HENRY R F, ZHANG G, et al. Ritonavir form Ⅲ:A new polymorph after 24 years[J]. Journal of Pharmaceutical Sciences, 2023, 112(1):237-242
[58] PARENT S D, SMITH P A, PURCELL D K, et al. Ritonavir form Ⅲ:A coincidental concurrent discovery[J]. Crystal Growth & Design, 2022, doi:10.1021/acs.cgd.2c01017
[59] LI S, LIU B, OU X, et al. Ritonavir revisited:Melt crystallization can easliy find the late appearing polymorph Ⅱ and unexpectedly discover a new polymorph Ⅲ.[J]. Molecular Pharmaceutics, 2022, accepted
[60] ZHANG K, FELLAH N, SHTUKENBERG A G, et al. Discovery of new polymorphs of the tuberculosis drug isoniazid[J]. CrystEngComm, 2020, 22(16):2705-2708
[61] HUANG J, CHEN S, GUZEI I A, et al. Discovery of a solid solution of enantiomers in a racemate-forming system by seeding[J]. Journal of the American Chemical Society, 2006, 128(36):11985-11992
[62] ZHONG Z, GUO C, CHEN L, et al. Co-crystal formation between poly(ethylene glycol) and a small molecular drug griseofulvin[J]. Chemical Communications (Cambridge, England), 2014, 50(48):6375-6378
[63] ZHONG Z, GUO C, YANG X, et al. Drug molecule diflunisal forms crystalline inclusion complexes with multiple types of linear polymers[J]. Crystal Growth & Design, 2016, 16(3):1181-1186
[64] ZHONG Z, YANG X, WANG B, et al. Solvent-polymer guest exchange in a carbamazepine inclusion complex:Structure, kinetics and implication for guest selection[J]. CrystEngComm, 2019, 21(13):2164-2173
[65] SHI Q, ZHANG C, SU Y, et al. Acceleration of crystal growth of amorphous griseofulvin by low-concentration poly(ethylene oxide):Aspects of crystallization kinetics and molecular mobility[J]. Molecular Pharmaceutics, 2017, 14(7):2262-2272
[66] SHI Q, ZHANG J, ZHANG C, et al. Selective acceleration of crystal growth of indomethacin polymorphs by low-concentration poly(ethylene oxide)[J]. Molecular Pharmaceutics, 2017, 14(12):4694-4704
[67] SHI Q, CHENG J, LI F, et al. Molecular mobility and crystal growth in amorphous binary drug delivery systems:Effects of low-concentration poly(ethylene oxide)[J]. AAPS PharmSciTech, 2020, doi:10.1208/s12249-020-01869-9
[68] ZHANG J, SHI Q, TAO J, et al. Impact of polymer enrichment at the crystal-liquid interface on crystallization kinetics of amorphous solid dispersions[J]. Molecular Pharmaceutics, 2019, 16(3):1385-1396
[69] ZHANG J, SHI Q, GUO M, et al. Melt crystallization of indomethacin polymorphs in the presence of poly(ethylene oxide):Selective enrichment of the polymer at the crystal-liquid interface[J]. Molecular Pharmaceutics, 2020, 17(6):2064-2071
[70] SATO T, TAYLOR L S. Acceleration of the crystal growth rate of low molecular weight organic compounds in supercooled liquids in the presence of polyhydroxybutyrate[J]. CrystEngComm, 2017, 19(1):80-87
[71] HUANG C B, POWELL C T, SUN Y, et al. Effect of low-concentration polymers on crystal growth in molecular glasses:A controlling role for polymer segmental mobility relative to host dynamics[J]. The Journal of Physical Chemistry B, 2017, 121(8):1963-1971
[72] KOTHARI K, RAGOONANAN V, SURYANARAYANAN R. The role of drug-polymer hydrogen bonding interactions on the molecular mobility and physical stability of nifedipine solid dispersions[J]. Molecular Pharmaceutics, 2015, 12(1):162-170
[73] TAYLOR L S, ZOGRAFI G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions[J]. Pharmaceutical Research, 1997, 14(12):1691-1698
[74] MALMOS A W G, MARON L. (2S,6'R)-7-chloro-2',4,6,-trimethoxy-6'-methyl-spiro-(benzofuran-2(3H),2-(2')cyclohexane)-3,4'-dione C17H17ClO6[J]. Crystal Structure Communications, 1977, 6:463-470
[75] BAUER J, SPANTON S, HENRY R, et al. Ritonavir:An extraordinary example of conformational polymorphism[J].Pharmaceutical Research, 2001, 18(6):859-866
[76] BU?AR D K, LANCASTER R W, BERNSTEIN J. Disappearing polymorphs revisited[J]. Angewandte Chemie International Edition, 2015, 54(24):6972-6993
[77] MORISSETTE S L, SOUKASENE S, LEVINSON D, et al. Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5):2180-2184
[78] YAO X, HENRY R, ZHANG G. Ritonavir form Ⅲ:A new polymorph after 24 years[Z]. Cambridge:Cambridge Open Engage; ChemRxiv. 2022, doi:10.26434/chemrxiv-2022-35fwp. This content is a preprint and has not been peer-reviewed
[79] PARENT S, SMITH P, PURCELL D, et al. Ritonavir form Ⅲ:Lightning strikes twice at the same time, 137 miles apart[Z]. Cambridge:Cambridge Open Engage; ChemRxiv. 2022, doi:10.26434/chemrxiv-2022-49tzw. This content is a preprint and has not been peer-reviewed
[80] LI S, LIU B, OU X, et al. Ritonavir form Ⅲ:An unexpected discovery while searching for the late-appearing polymorph Ⅱ from melts[Z]. Cambridge:Cambridge Open Engage; ChemRxiv. 2022, doi:10.26434/chemrxiv-2022-nn6k2. This content is a preprint and has not been peer-reviewed
[81] KAWAKAMI K, HARADA T, MIURA K, et al. Relationship between crystallization tendencies during cooling from melt and isothermal storage:Toward a general understanding of physical stability of pharmaceutical glasses[J]. Molecular Pharmaceutics, 2014, 11(6):1835-1843
[82] BEINER M, RENGARAJAN G T, PANKAJ S, et al. Manipulating the crystalline state of pharmaceuticals by nanoconfinement[J]. Nano Letters, 2007, 7(5):1381-1385
[83] ZHANG K, FELLAH N, LÓPEZ-MEJÍAS V, et al. Polymorphic phase transformation pathways under nanoconfinement:Flufenamic acid[J]. Crystal Growth & Design, 2020, 20(11):7098-7103
[84] DE FREITAS-MARQUES M B, YOSHIDA M I, FERNANDES C, et al. Lumefantrine comparative study:Single crystal, powder X-ray diffraction, hirshfeld surface, and thermal analysis[J]. Journal of Structural Chemistry, 2020, 61(1):151-159
[85] LI M, LI J, LIU B, et al. Synthesis, crystal structures, and anti-drug-resistant Staphylococcus aureus activities of novel 4-hydroxycoumarin derivatives[J]. European Journal of Pharmacology, 2013, 721(1/2/3):151-157
[86] BAG P P, REDDY C M. Tramadol hydrochloride and its acetonitrile solvate:Crystal structure analysis and thermal studies[J]. Proceedings of the National Academy of Sciences, India Section A:Physical Sciences, 2014, 84(2):235-242
[87] MAGHSOODI M. Role of solvents in improvement of dissolution rate of drugs:Crystal habit and crystal agglomeration[J]. Advanced Pharmaceutical Bulletin, 2015, 5(1):13-18
[88] KANGO S, KALIA S, THAKUR P, et al. Semiconductor-polymer hybrid materials[M]//Organic-Inorganic Hybrid Nanomaterials. Cham:Springer International Publishing, 2014:283-311
[89] HARMSEN B, ROBEYNS K, WOUTERS J, et al. A study of fasoracetam's solid state forms:A potential anti-alzheimer pharmaceutical[J]. Journal of Pharmaceutical Sciences, 2017, 106(5):1317-1321
[90] SU Y, XU J, SHI Q, et al. Polymorphism of griseofulvin:Concomitant crystallization from the melt and a single crystal structure of a metastable polymorph with anomalously large thermal expansion[J]. Chemical Communications (Cambridge, England), 2018, 54(4):358-361
[91] 陆明, 李锡祯, 欧霄. 化合物单晶及其制备方法:CN112239890B[P]. 2022-06-21 LU Ming, LI Xizhen, OU Xiao. Single crystal and preparation method:CN112239890B[P]. 2022-06-21 (in Chinese)
[92] 陆明, 黄思咏, 李锡祯, 等. 化合物单晶及其制备方法:CN112250663B[P]. 2022-08-19 LU Ming, HUANG Siyong, LI Xizhen, et al. Single crystal and preparation method:CN112250663B[P]. 2022-08-19 (in Chinese)
[93] LI A, LI S, WANG J, et al. Pterostilbene-nicotinamide cocrystal:A case report of single cocrystals grown from melt microdroplets[J]. Crystal Growth & Design, 2022, doi:10.1021/acs.cgd.2c01073
[94] CHEN A, CAI P, LUO M, et al. Melt crystallization of celecoxib-carbamazepine cocrystals with the synchronized release of drugs[J]. Pharmaceutical Research, 2022:1-11
[95] ZHU W, SU Q, DENG X, et al. Organocatalytic enantioselective SN1-type dehydrative nucleophilic substitution:Access to bis(indolyl)methanes bearing quaternary carbon stereocenters[J]. Chemical Science, 2022, 13(1):170-177
|