[1] Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream[J]. Science, 2004, 303: 1 818-1 822
[2] Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs[J]. Expert Opin Inv Drug, 2007, 4: 403-416
[3] Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs[J]. Adv Drug Deliver Rev,2014, 75: 81-91
[4] Cansell F, Aymonier C. Design of functional nanostructured materials using supercritical fluids[J]. J Supercrit Fluid, 2009, 47: 508-516
[5] Jain A, Bollinger J A, Truskett T M. Inverse methods for material design[J]. AIChE J, 2014, 60(3): 2 732-2 740
[6] Yasuji T, Takeuchi H, Kawashima Y. Particle design of poorly water-soluble drug substances using supercritical fluid technologies[J]. Adv Drug Deliv Rev, 2008, 60 (3): 388-398
[7] Jung J, Perrut M. Particle design using supercritical fluids: Literature and patent survey [J]. Journal of Supercritical Fluids, 2001, 20: 179-219
[8] Krukonis V. Supercritical fluid nucleation of difficult to comminute solids [C]. San Francisc Annual Meeting A IChE, 1984: 11
[9] Smith R D. Supercritical fluid molecular spray film deposition and powder formation: US, 4582731[P]. 1986-04-15
[10] Graser F, Wickenhaeuser G. Conditioning of finely divided crude organic pigments: US, 4451654 [P]. 1984-05-29
[11] Gallagher P M, Coffey M P, Krukonis V J. Gas anti-solvent recrystallization of RDX: Formation of ultrafine particles of a difficult-to-comminute explosive [J]. J Supercrit Fluids, 1992, 5: 130-142
[12] Hanna M, York P. Method and apparatus for formation of particles: WO, 1995/01221 [P]. 1994-06-30
[13] Chattopadhyay P, Gupta R B. Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer[J]. Int J Pharm, 2001, 228: 19-31
[14] Gupta R B, Shim J J. Solubility in supercritical carbon dioxide[M].USA: CRC Press, 2006
[15] Skerget M, Knez Z, Knez-Hrncic M. Solubility of solids in sub-and supercritical fluids: A review[J]. J Chem Eng Data, 2011, 56: 694-719
[16] Jiang Y, Liu M, Sun W, et al. Phase behavior of poly (lactic acid)/poly (ethylene glycol)/poly (lactic acid)(PLA-PEG-PLA) in different supercritical systems of CO2+dichloromethane and CO2+C2H5OH+dichloro methane[J]. J Chem Eng Data, 2010, 55: 4 844-4 848
[17] Diefenbacher A,Türk M. Phase equilibria of organic solid solutes and supercritical fluids with respect to the RESS process[J]. Journal of Supercritical Fluids, 2002, 22(3): 175-184
[18] Reverchon E, Caputo G, De Marco I. Role of phase behavior and atomization in the supercritical antisolvent precipitation[J]. Ind Eng Chem Res, 2003, 42: 6 406-6 414
[19] Weber M, Russell L M, Debenedetti P G. Mathematical modeling of nucleation and growth of particles formed by the rapid expansion of a supercritical solution under subsonic conditions[J]. J Supercritical Fluid, 2002, 23: 65-80
[20] Martín A, Cocero M J. Micronization processes with supercritical fluids: Fundamentals and mechanisms[J]. Adv Drug Deliver Rev, 2008, 60: 339-350
[21] Martín A, Cocero M J. Numerical modeling of jet hydrodynamics, mass transfer, and crystallization kinetics in the supercritical antisolven(SAS) process[J]. J Supercritical Fluid, 2004, 32: 203-219
[22] Lengsfeld C S, Delplanque J P, Barocas V H, et al. Mechanism governing microparticle morphology during precipitation by a compressed ntisolvent: Atomization vs nucleation and growth[J]. J Phys Chem B, 2000, 104: 2 725-2 735
[23] Werling J O, Debenedetti P G. Numerical modeling of mass transfer in the supercritical antisolvent process[J]. J Supercrit Fluid, 1999, 16: 167-181
[24] Chattopadhyay P, Gupta R B. Protein nanoparticles formation by supercritical antisolvent with enhanced mass transfer[J]. AIChE J, 2002, 48: 235-244
[25] Bahrami M, Ranjbarian S. Production of micro-and nanocomposite particles by supercritical carbon dioxide[J]. J Supercritical Fluids, 2007, 40: 263-283
[26] Zarena A S, Sankar K U. Design of submicron and nanoparticle delivery systems using supercritical carbon dioxide-mediated processes: An overview[J]. Therapeutic Delivery, 2011, 2: 259-277
[27] Domingo C, Saurina J. An overview of the analytical characterization of nanostructured drug delivery systems: Towards green and sustainable pharmaceuticals: A review[J]. Anal Chim Acta, 2012, 744:8-22
[28] Sun Y. Supercritical fluid particle design for poorly water-soluble drugs[J]. Current Pharmaceutical Design, 2014,20: 349-368
[29] Chen W, Hu X, Hong Y, et al. Ibuprofen nanoparticles prepared by a PGSSTM-based method[J]. Powder Technol, 2013, 245: 241-250
[30] Dalvi S V, Azad M A, Dave R. Precipitation and sta-bilization of ultrafine particles of Fenofibrate in aqueous suspensions by RESOLV[J]. Powder Technol, 2013, 236: 75-84
[31] Kim M S, Jin S J, Kim J S, et al. Preparation, characterization and in-vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process[J]. Eur J Pharm Biopharm, 2008, (69): 454-465
[32] Esfandiari N, Ghoreishi S M. Synthesis of 5-fluorouracil nanoparticles via supercritical gas antisolvent process[J]. J Supercrit Fluid, 2013, 84: 205-210
[33] Zu Y, Wang D, Zhao X, et al. A novel preparation method for camptothecin (CPT) loaded folic acid conjugated dextran tumortargeted nanoparticles[J]. Int J Mol Sci 2011; 12: 4 237-4 249
[34] Huang Z, Guo Y, Miao H, et al. Solubility of progesterone in supercritical carbon dioxide and its micronization through RESS[J]. Powder Technol,2014, 258: 66-77
[35] Yim J H, Kim W S, Lim J S. Recrystallization of adefovir dipivoxilparticles using the aerosol solvent extraction system process[J]. Ind Eng Chem Res, 2014, 53: 1 663-1 671
[36] Todo H, Iida K, Okamoto H, et al. Improvement of insulin absorption from intratracheally administrated dry powder prepared by supercritical carbon dioxide process[J]. J Pharm Sci, 2003, 92: 2 475-2 486
[37] Bahrami M, Ranjbarian S. Production of micro-and nanocomposite particles by supercritical carbon dioxide[J]. J Supercritical Fluids, 2007, 40: 263-283
[38] Tandya A, Mammucari R, Dehghani F, et al.Dense gas processing of polymeric controlled release formulations[J]. Int J Pharm, 2007, 328: 1-11
[39] Reverchon E, De Marco I, Caputo G, et al.Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation[J]. J Supercritical Fluids, 2003, 26: 1-7
[40] Steckel H, Thies J, Müller B W. Micronizing of steroids for pulmonary delivery by supercritical carbon dioxide [J]. Int J Pharm, 1997, 152: 99-110
[41] Todo H, Iida K, Okamoto H, et al. Improvement of insulin absorption from intratracheally administrated dry powder prepared by supercritical carbon dioxide process[J]. J Pharm Sci, 2003, 92: 2 475-2 486
[42] Rodriguez-Spong B, Price C P, Jayasankar A, et al.General principles of pharmaceutical solid polymorphism: A supramolecular perspective[J]. Adv Drug Del Rev, 2004, 56: 241-274
[43] Knapman K. Polymorphic predictions[J]. Modern Drug Discovery, 2000, 3: 53-57
[44] Kruger G J, Gafner G. The crystal structures of polymorphs I and III of sulphathiazole[J]. Acta Cryst, 1972, B28: 272-283
[45] Kordikowski A, Shekunov T, York P. Polymorph control of sulfathiazole in supercritical CO2[J]. Pharm Res, 2001, 18: 682-688
[46] Varshosaz J, Hassanzadeh F, Mahmoudzadeh M, et al. Preparation of cefuroxime axetil nanoparticles by rapid expansion of supercritical fluid technology[J]. Powder Technol, 2009, 189: 97-102
[47] Kim M S, Jin S J, Kim J S, et al. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process[J]. Eur J Pharm Biopharm, 2008, 69: 454-465
[48] Shekunov B Y, Bristow S, York P. Formation of composite crystals by precipitation in supercritical CO2[J]. Crystal Growth and Design, 2003, 3(4): 603-610
[49] Luis P, Miguel A, de Azevedo E G, et al. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology[J]. European Journal of Pharmaceutical Sciences, 2009, 38: 9-17
[50] Reverchon E, Volpe M C, Caputo G. Supercritical fluid processing of polymers: Composite particles and porous materials elaboration[J]. Current Opinion in Solid State and Materials Sci, 2003, 7: 391-397
[51] Lee L Y, Wang C H, Smith K A. Supercritical antisolvent production of biodegradable micro-and nanoparticles for controlled delivery of paclitaxel[J]. J Control Release, 2008, 125: 96-106
[52] Hu D, Lin C, Liu L, et al. Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids[J]. J Food Eng, 2012, 109: 545-552
[53] Chattopadhyay P, Shekunov B Y, Yim D, et al. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system[J]. Adv Drug Del Rev, 2007, 59: 444-453
[54] Salmaso S, Elvassore N, Bertucco A, et al.Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process[J]. J Pharm Sci, 2009, 98: 640-649
[55] Zu Y, Wang D, Zhao X, et al. A novel preparation method for camptothecin (CPT) loaded folic acid conjugated dextran tumortargeted nanoparticles[J]. Int J Mol Sci, 2011, 12: 4 237-4 249
[56] Vezzù K, Campolmi C, Bertucco A. Production of lipid microparticles magnetically active by a supercritical fluid-based process[J]. Int J Chem Eng, 2009, 2009: 1-9
[57] Sievers R E, Quinn B P, Cape S P, et al.Near-Critical fluid micronization of stabilized vaccines, antibiotics and anti-virals[J]. J Supercritical Fluids, 2007, 42: 385-391
[58] Burger J L, Cape S P, Braun C S, et al.Stabilizing formulations for inhalable powders of live-attenuated measles virus vaccine[J]. J Aerosol Med Pulm Drug Deliv, 2008, 21: 25-34
[59] Tservistas M, Levy M S, Lo-Yim M Y A, et al. The formation of plasmid DNA loaded pharmaceutical powders using supercritical fluid technology[J]. Biotechnol Bioeng, 2001, 72: 12-18
[60] Okamoto H, Nishida S, Todo H, et al. Pulmonary gene delivery by chitosan-pDNA complex powder prepared by a supercritical carbon dioxide process[J]. J Pharm Sci, 2003, 92: 371-380
|