[1] CLARKE E D, DELANEY J S. Physical and molecular properties of agrochemicals:An analysis of screen inputs, hits, leads, and products[J]. CHIMIA, 2003, doi:10.2533/000942903777678641
[2] TISDALE S L, NELSON W L. Soil fertility and fertilizers[J]. Soil Science, 1966, doi:10.1007/s12155-019-10021-w
[3] COOPER J. The benefits of pesticides to mankind and the environment[J]. Crop Protection, 2007, 26(9):1337-1348
[4] ROGAN W J, CHEN A. Health risks and benefits of bis(4-chlorophenyl)-1, 1, 1-trichloroethane (DDT)[J]. The Lancet, 2005, 366(9487):763-773
[5] OTEKUNRIN O A, SAWICKA B, ADEYONU A G, et al. Cocoyam[colocasia esculenta (L.) schott]:Exploring the production, health and trade potentials in sub-Saharan Africa[J]. Sustainability, 2021, doi:10.3390/su13084483
[6] KHANKARI R K, GRANT D. Pharmaceutical hydrates[J]. Thermochimica Acta, 1995, 248:61-79
[7] GRANT D J. Theory and origin of polymorphism[J]. Polymorphism in Pharmaceutical Solids, 1999:1-34
[8] SUN L, ZHU W, ZHANG X, et al. Creating organic functional materials beyond chemical bond synthesis by organic cocrystal engineering[J]. Journal of the American Chemical Society, 2021, 143(46):19243-19256
[9] SEKHON B S. Co-crystals of agrochemical actives[J]. International Journal of Agricultural Sciences, 2014, 5(3):472-475
[10] OLENIK B, KEIL B, JESCHKE P. Importance of chemical polymorphism in modern crop protection[J]. Pest Management Science, 2022, 78(7):2746-2758
[11] SMITH A M, GILBERTSON L M. Rational ligand design to improve agrochemical delivery efficiency and advance agriculture sustainability[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):13599-13610
[12] HERMOSIN M, CELIS R, FACENDA G. Bioavailability of the herbicide 2, 4-D formulated with organoclays[J]. Soil Biology and Biochemistry, 2006, 38(8):2117-2124
[13] SUNITA P, JAYA B, RAJESH S, et al. Sustained release of pesticide (Cypermethrin) from nanocarriers:An effective technique for environmental and crop protection[J]. Process Safety and Environmental Protection, 2018, 117:315-325
[14] XIANG Y, LU X, YUE J, et al. Stimuli-responsive hydrogel as carrier for controlling the release and leaching behavior of hydrophilic pesticide[J]. Science of the Total Environment, 2020, doi:10.1016/j.scitotenv.2020.137811
[15] XIANG Y, HAN J, ZHANG G, et al. Efficient synthesis of starch-regulated porous calcium carbonate microspheres as a carrier for slow-release herbicide[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3):3649-3658
[16] ZHANG Q, DU Y, YU M, et al. Controlled release of dinotefuran with temperature/pH-responsive chitosan-gelatin microspheres to reduce leaching risk during application[J]. Carbohydrate Polymers, 2022, doi:10.1016/j.carbpol.2021.118880
[17] SALAM S T, PIRZADAH T B, DAR P A. Nanotechnology:An overview[M]//Nanotechnology in the Life Sciences. Cham:Springer International Publishing, 2020:1-14
[18] DENG X, ZHAO P, ZHOU X, et al. Excellent sustained-release efficacy of herbicide quinclorac with cationic covalent organic frameworks[J]. Chemical Engineering Journal, 2021, doi:10.1016/j.cej.2020.126979
[19] ITO A, AMANO T, MASAKI R. Cocrystal of diamide insecticide and neonicotinoid insecticide, manufacture thereof, agrochemical formulation and seed treatment agent containing the cocrystal, and method for coating seed, WO2015072355[P/OL]. 2015
[20] XIAO Y, WU C, ZHOU L, et al. Cocrystal engineering strategy for sustained release and leaching reduction of herbicides:A case study of metamitron[J]. Green Chemistry, 2022, 24(20):8088-8099
[21] FRIZZELL D. Metalaxyl and prothioconazole cocrystals and methods of making and using:US9795137[P]. 2017-10-24
[22] YAMAMURA S. Manufacture of cocrystal of thiophanate methyl and triazole compound and agrochemical composition containing the cocrystal, WO2015093367[P/OL]. 2015
[23] CHRISTIANSON C B, VLEK P L G. Alleviating soil fertility constraints to food production in West Africa:Efficiency of nitrogen fertilizers applied to food crops[J]. Fertilizer Research, 1991, 29(1):21-33
[24] INGESTAD T. Nitrogen and plant growth; maximum efficiency of nitrogen fertilizers[J]. Ambio, 1977, 6(2/3):146-151
[25] FIXEN P E, WEST F B. Nitrogen fertilizers:Meeting contemporary challenges[J]. Ambio, 2002, 31(2):169-176
[26] INDIRA C. Effect of nitrogen fertilizers on growth, yield and quality of hybrid rice (oryza sativa)[J]. Journal of Central European Agriculture, 2006, 6(4):611-618
[27] TEMPLEMAN W. Urea as a fertilizer[J]. The Journal of Agricultural Science, 1961, 57(2):237-239
[28] ANKUMAH R O. The influence of source and timing of nitrogen fertilizers on yield and nitrogen use efficiency of four sweet potato cultivars[J]. Agriculture, Ecosystems & Environment, 2003, 100(2/3):201-207
[29] GALLOWAY J N, COWLING E B. Reactive nitrogen and the world:200 years of change[J]. Ambio, 2002, 31(2):64-71
[30] WANG F, ALVA A K. Leaching of nitrogen from slow-release urea sources in sandy soils[J]. Soil Science Society of America Journal, 1996, 60(5):1454-1458
[31] SCHERGER L E, ZANELLO V, LEXOW C. Impact of urea and ammoniacal nitrogen wastewaters on soil:Field study in a fertilizer industry (bahía Blanca, Argentina)[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(3):565-573
[32] RAWLUK C D L, GRANT C A, RACZ G J. Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT[J]. Canadian Journal of Soil Science, 2001, 81(2):239-246
[33] COSKUN D, BRITTO D T, SHI W, et al. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition[J]. Nature Plants, 2017, doi:10.1038/nplants.2017.74
[34] SUBRAMANIAN K S, MANIKANDAN A, THIRUNAVUKKARASU M, et al. Nano-fertilizers for balanced crop nutrition[M]//Nanotechnologies in Food and Agriculture. Cham:Springer International Publishing, 2015:69-80
[35] QURESHI A, SINGH D K, DWIVEDI S. Nano-fertilizers:A novel way for enhancing nutrient use efficiency and crop productivity[J]. International Journal of Current Microbiology and Applied Sciences, 2018, 7(2):3325-3335
[36] MADZOKERE T, MUROMBO L, CHIRIRIWA H. Nano-based slow releasing fertilizers for enhanced agricultural productivity[J]. Materials Today:Proceedings, 2021, 45:3709-3715
[37] TUMANOV I A, MICHALCHUK A A L, POLITOV A A, et al. Inadvertent liquid assisted grinding:A key to "dry" organic mechano-co-crystallisation?[J]. CrystEngComm, 2017, 19(21):2830-2835
[38] YING P, YU J, SU W. Liquid-assisted grinding mechanochemistry in the synthesis of pharmaceuticals[J]. Advanced Synthesis and Catalysis, 2021, 363(5):1246-1271
[39] EKSILER K, ANDOU Y, YILMAZ F, et al. Dynamically controlled fibrillation under combination of ionic liquid with mechanical grinding[J]. Journal of Applied Polymer Science, 2017, doi:10.1002/app.44469
[40] FRIŠ??I? T, MOTTILLO C, TITI H M. Mechanochemistry for synthesis[J]. Angewandte Chemie (International Ed in English), 2020, 59(3):1018-1029
[41] SANDHU B, SINHA A S, DESPER J, et al. Modulating the physical properties of solid forms of urea using co-crystallization technology[J]. Chemical Communications, 2018, 54(37):4657-4660
[42] MAZZEI L, BROLL V, CASALI L, et al. Multifunctional urea cocrystal with combined ureolysis and nitrification inhibiting capabilities for enhanced nitrogen management[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15):13369-13378
[43] PARAKATAWELLA S, GOGOI D, DEKA P, et al. Mechanochemical synthesis of polymorphic urea·adipic acid cocrystal as a sustained-release nitrogen source[J]. ChemSusChem, 2022, doi:10.1002/cssc.202102445
[44] ZHENG B, KABIRI S, ANDELKOVIC I B, et al. Mechanochemical synthesis of zinc borate for use as a dual-release B fertilizer[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(47):15995-16004
[45] SHARMA L, KIANI D, HONER K, et al. Mechanochemical synthesis of Ca- and Mg-double salt crystalline materials using insoluble alkaline earth metal bearing minerals[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7):6802-6812
[46] BALTRUSAITIS J. Sustainable ammonia production[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11):9527-9527
[47] MALINOWSKI P, BISKUPSKI A, G?OWI?SKI J. Preparation methods of calcium sulphate and urea adduct[J]. PJCT, 2007, 9(4):111-114
[48] HONER K, KALFAOGLU E, PICO C, et al. Mechanosynthesis of magnesium and calcium salt-urea ionic cocrystal fertilizer materials for improved nitrogen management[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10):8546-8550
[49] CASALI L, MAZZEI L, SHEMCHUK O, et al. Novel dual-action plant fertilizer and urease inhibitor:Urea·catechol cocrystal, characterization and environmental reactivity[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2):2852-2859
[50] HONER K, PICO C, BALTRUSAITIS J. Reactive mechanosynthesis of urea ionic cocrystal fertilizer materials from abundant low solubility magnesium- and calcium-containing minerals[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4):4680-4687
[51] CASALI L, MAZZEI L, SHEMCHUK O, et al. Smart urea ionic co-crystals with enhanced urease inhibition activity for improved nitrogen cycle management[J]. Chemical Communications, 2018, 54(55):7637-7640
[52] JULIEN P A, GERMANN L S, TITI H M, et al. In situ monitoring of mechanochemical synthesis of calcium urea phosphate fertilizer cocrystal reveals highly effective water-based autocatalysis[J]. Chemical Science, 2020, 11(9):2350-2355
[53] BAR??AUSKAIT? K, BRAZIENE·Z, AVI?IENYTE·D, et al. Mechanochemically synthesized gypsum and gypsum drywall waste cocrystals with urea for enhanced environmental sustainability fertilizers[J]. Journal of Environmental Chemical Engineering, 2020, doi:10.1016/j.jece.2020.103965
[54] SILVA M, BARCAUSKAITE K, DRAPANAUSKAITE D, et al. Relative humidity facilitated urea particle reaction with salicylic acid:A combined In situ spectroscopy and DFT study[J]. ACS Earth and Space Chemistry, 2020, 4(7):1018-1028
[55] GONG L, LI T, CHEN F, et al. An inclusion complex of eugenol into β-cyclodextrin:Preparation, and physicochemical and antifungal characterization[J]. Food Chemistry, 2016, 196:324-330
[56] PAVELA R. Essential oils as ecofriendly biopesticides? challenges and constraints[J]. Trends in Plant Science, 2016, 21(12):1000-1007
[57] CHAUDHARI A K, SINGH V K, KEDIA A, et al. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests:Prospects and retrospects[J]. Environmental Science and Pollution Research, 2021, 28(15):18918-18940
[58] BILIA A R, GUCCIONE C, ISACCHI B, et al. Essential oils loaded in nanosystems:A developing strategy for a successful therapeutic approach[J]. Evidence-Based Complementary and Alternative Medicine, 2014, doi:10.1155/2014/651593
[59] CARSON C F, HAMMER K A. Chemistry and bioactivity of essential oils[J]. Lipids and Essential Oils as Antimicrobial Agents, 2010:203-238
[60] KOUL O, WALIA S, DHALIWAL G. Essential oils as green pesticides:Potential and constraints[J]. Biopesticides International, 2008, 4(1):63-84
[61] FALLEH H, JEMAA M B, SAADA M. Essential oils:A promising eco-friendly food preservative[J]. Food Chemistry, 2020, doi:10.1016/j.foodchem.2020.127268
[62] SAROJ A, ORIYOMI O V, NAYAK A K, et al. Phytochemicals of plant-derived essential oils[M]//Natural Remedies for Pest, Disease and Weed Control. Amsterdam:Elsevier, 2020:65-79
[63] MAZZEO P P, CARRARO C, MONICA A, et al. Designing a palette of cocrystals based on essential oil constituents for agricultural applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(21):17929-17940
[64] MONTISCI F, MAZZEO P P, CARRARO C, et al. Dispensing essential oil components through cocrystallization:Sustainable and smart materials for food preservation and agricultural applications[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(26):8388-8399
[65] BIANCHI F, FORNARI F, RIBONI N, et al. Development of novel cocrystal-based active food packaging by a quality by design approach[J]. Food Chemistry, 2021, 347:129051
[66] BAKKALI F, AVERBECK S, AVERBECK D, et al. Biological effects of essential oils-A review[J]. Food and chemical toxicology, 2008, 46(2):446-475
[67] SHARMA S, BARKAUSKAITE S, JAISWAL A K et al. Essential oils as additives in active food packaging[J]. Food Chemistry, 2020, doi:10.1016/j.foodchem.2020.128403
[68] BOREL-SALADIN J M, TUROK I N. The green economy:Incremental change or transformation?[J]. Environmental Policy and Governance, 2013, 23(4):209-220
|