[1] Bolla G, Nangia A. Pharmaceutical cocrystals:Walking the talk[J]. Chemical Communications,2016, 52(54):8342-8360
[2] Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties[J]. Crystal Growth & Design,2009, 9(6):2950-2967
[3] Cruz-Cabeza A J, Reutzel-Edens S M, Bernstein J. Facts and fictions about polymorphism[J]. Chemical Society Reviews, 2015, 44(23):8619-8635
[4] Almarsson O, Zaworotko M J. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines?[J]. Chemical Communications, 2004,(17):1889-1896
[5] Vishweshwar P, Mcmahon J A, Peterson M L, et al. Crystal engineering of pharmaceutical co-crystals from polymorphic active pharmaceutical ingredients[J]. Chemical Communications,2005,(36):4601-4603
[6] Vishweshwar P, Mcmahon J A, Bis J A, et al. Pharmaceutical co-crystals[J]. Journal of Pharmaceutical Sciences,2006, 95(3):499-516
[7] Aitipamula S, Chow P S, Tan R B H. Trimorphs of a pharmaceutical cocrystal involving two active pharmaceutical ingredients:Potential relevance to combination drugs[J]. Cryst Eng Comm, 2009, 11(11):1823-1827
[8] Ueto T, Takata N, Muroyama N, et al. Polymorphs and a hydrate of furosemide-nicotinamide 1:1 cocrystal[J]. Crystal Growth & Design,2012, 12(1):485-494
[9] Nanubolu J B, Ravikumar K. Designing a new cocrystal of olanzapine drug and observation of concomitant polymorphism in a ternary cocrystal system[J]. Cryst Eng Comm,2017, 19(2):355-366
[10] Bolla G, Nangia A. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides[J]. IUCrJ,2016, 3(2):152-160
[11] Aitipamula S, Chow P S, Tan R B H. Polymorphs and solvates of a cocrystal involving an analgesic drug, ethenzamide, and 3,5-dinitrobenzoic acid[J]. Crystal Growth & Design,2010, 10(5):2229-2238
[12] Lemmerer A, Adsmond D A, Esterhuysen C, et al. Polymorphic co-crystals from polymorphic co-crystal formers:Competition between carboxylic acid…pyridine and phenol…pyridine hydrogen bonds[J]. Crystal Growth & Design,2013, 13(9):3935-3952
[13] Sun C C. Cocrystallization for successful drug delivery[J]. Expert Opinion on Drug Delivery,2013, 10(2):201-213
[14] Aitipamula S, Chow P S, Tan R B H. Polymorphism in cocrystals:A review and assessment of its significance[J]. Cryst Eng Comm,2014, 16(17):3451-3465
[15] 张婷婷. 药物共晶的设计、合成与性质研究[D]. 长春:吉林大学, 2014 Zhang Tingting. Pharmaceutical co-crystal:Design, synthesis and characterization[D]. Changchun:Jilin University, 2014(in Chinese)
[16] Douroumis D, Ross S A, Nokhodchi A. Advanced methodologies for cocrystal synthesis[J]. Advanced Drug Delivery Reviews, 2017, 117:178-195
[17] Pindelska E, Sokal A, Kolodziejski W. Pharmaceutical cocrystals, salts and polymorphs:Advanced characterization techniques[J]. Advanced Drug Delivery Reviews, 2017, 117:111-146
[18] Bernstein J. Polymorphism in molecular crystals[M]. Oxford:Oxford University Press, 2002
[19] Hilfiker R. Polymorphism in the pharmaceutical industry[M]. Weinheim, Germany:Wiley-VCH, 2006
[20] Mukherjee A, Desiraju G R. Synthon polymorphism and pseudopolymorphism in co-crystals. The 4,4[prime or minute]-bipyridine-4-hydroxybenzoic acid structural landscape[J]. Chemical Communications, 2011, 47(14):4090-4092
[21] Schultheiss N, Roe M, Boerrigter S X M. Cocrystals of nutraceutical p-coumaric acid with caffeine and theophylline:Polymorphism and solid-state stability explored in detail using their crystal graphs[J]. Cryst Eng Comm, 2011, 13(2):611-619
[22] Li S, Chen J, Lu T. Synthon polymorphs of 1:1 co-crystal of 5-fluorouracil and 4-hydroxybenzoic acid:Their relative stability and solvent polarity dependence of grinding outcomes[J]. Cryst Eng Comm, 2014, 16(28):6450-6458
[23] Sarcevica I, Orola L, Veidis M V, et al. Cinnamic acid hydrogen bonds to isoniazid and N'-(propan-2-ylidene) isonicotinohydrazide, an in situ reaction product of isoniazid and acetone[J]. Acta Crystallographica, 2014, 70(4):392-395
[24] Susano M A, Martín-Ramos P, Maria T M R, et al. Co-Crystal of suberic acid and 1,2-bis(4-pyridyl)ethane:A new case of packing polymorphism[J]. Journal of Molecular Structure, 2017, 1147:76-83
[25] Braga D, Palladino G, Polito M, et al. Three polymorphic forms of the co-crystal 4,4'-bipyridine/pimelic acid and their structural, thermal, and spectroscopic characterization[J]. Chemistry-A European Journal, 2008, 14(32):10149-10159
[26] Aitipamula S, Chow P S, Tan R B H. Conformational and enantiotropic polymorphism of a 1:1 cocrystal involving ethenzamide and ethylmalonic acid[J]. Cryst Eng Comm, 2010, 12(11):3691-3697
[27] Childs S L, Hardcastle K I. Cocrystals of piroxicam with carboxylic acids[J]. Crystal Growth & Design, 2007, 7(7):1291-1304
[28] Qiao N, Li M, Schlindwein W, et al. Pharmaceutical cocrystals:An overview[J]. International Journal of Pharmaceutics, 2011, 419(1/2):1-11
[29] Leyssens T, Tumanova N, Robeyns K, et al. Solution cocrystallization, an effective tool to explore the variety of cocrystal systems:CAFFEINE/dicarboxylic acid cocrystals[J]. Cryst Eng Comm, 2014, 16(41):9603-9611
[30] Bevill M J, Vlahova P I, Smit J P. Polymorphic cocrystals of nutraceutical compound p-coumaric acid with nicotinamide:Characterization, relative solid-state stability, and conversion to alternate stoichiometries[J]. Crystal Growth & Design, 2014, 14(14):1438-1448
[31] Lee M J, Wang I C, Kim M J, et al. Controlling the polymorphism of carbamazepine-saccharin cocrystals formed during antisolvent cocrystallization using kinetic parameters[J]. Korean Journal of Chemical Engineering, 2015, 32(9):1-8
[32] Newman A. Specialized solid form screening techniques[J]. Organic Process Research & Development, 2013, 17(3):457-471
[33] Trask A V, Motherwell W D S, Jones W. Solvent-Drop grinding:Green polymorph control of cocrystallisation[J]. Chemical Communications, 2004, (7):890-891
[34] Fischer F, Heidrich A, Greiser S, et al. Polymorphism of mechanochemically synthesized cocrystals:A case study[J]. Crystal Growth & Design, 2016, 16(3):1701-1707
[35] Hasa D, Miniussi E, Jones W. Mechanochemical synthesis of multicomponent crystals:One liquid for one polymorph? A myth to dispel[J]. Crystal Growth & Design, 2016, 16(8):4582-4588
[36] Bhattacharya S, Saha B K. Guest-Induced isomerization of net and polymorphism in trimesic acid-arylamine complexes[J]. Crystal Growth & Design, 2011, 11(6):2194-2204
[37] Madusanka N, Eddleston M D, Arhangelskis M, et al. Polymorphs, hydrates and solvates of a co-crystal of caffeine with anthranilic acid[J]. Acta Crystallographica, 2014, 70(70):72-80
[38] Hasa D, Schneider R G, Voinovich D, et al. Cocrystal formation through mechanochemistry:From neat and liquid-assisted grinding to polymer-assisted grinding[J]. Angewandte Chemie International Edition, 2015, 54(25):7371-7375
[39] Hasa D, Carlino E, Jones W. Polymer-Assisted grinding, a versatile method for polymorph control of cocrystallization[J]. Crystal Growth & Design, 2016, 16(3):1772-1779
[40] Eddleston M D, Sivachelvam S, Jones W. Screening for polymorphs of cocrystals:A case study[J]. Cryst Eng Comm, 2013, 15(1):175-181
[41] Lang M, Grzesiak A L, Matzger A J. The use of polymer heteronuclei for crystalline polymorph selection[J]. Journal of the American Chemical Society, 2002, 124(50):14834-14835
[42] López-Mejías V, Knight J L, Brooks C L, et al. On the mechanism of crystalline polymorph selection by polymer heteronuclei[J]. Langmuir, 2011, 27(12):7575-7579
[43] Frank D S, Matzger A J. Influence of chemical functionality on the rate of polymer-induced heteronucleation[J]. Crystal Growth & Design, 2017, 17(8):4056-4059
[44] Porter I W W, Elie S C, Matzger A J. Polymorphism in carbamazepine cocrystals[J]. Crystal Growth & Design, 2008, 8(1):14-16
[45] Alhalaweh A, Kaialy W, Buckton G, et al. Theophylline cocrystals prepared by spray drying:Physicochemical properties and aerosolization performance[J]. AAPS Pharm Sci Tech, 2013, 14(1):265-276
[46] Grossjohann C, Serrano D R, Paluch K J, et al. Polymorphism in sulfadimidine/4-aminosalicylic acid cocrystals:Solid-State characterization and physicochemical properties[J]. Journal of Pharmaceutical Sciences, 2015, 104(4):1385-1398
[47] Zakharov B A, Losev E A, Boldyreva E V. Polymorphism of "glycine-glutaric acid" co-crystals:The same phase at low temperatures and high pressures[J]. Cryst Eng Comm, 2013, 15(9):1693-1697
[48] Lee R, Firbank A J, Probert M R, et al. Expanding the pyridine-formic acid cocrystal landscape under extreme conditions[J]. Crystal Growth & Design, 2016, 16(7):4005-4011
[49] Neumann M A, Van J D S, Fabbiani F P, et al. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening[J]. Nature Communications, 2015, 6:7793
[50] Goud N R, Nangia A. Synthon polymorphs of sulfacetamide-acetamide cocrystal based on N-H…OS and N-H…OC hydrogen bonding[J]. Cryst Eng Comm, 2013, 15(37):7456-7461
[51] He H, Jiang L, Zhang Q, et al. Polymorphism observed in dapsone-flavone cocrystals that present pronounced differences in solubility and stability[J]. Cryst Eng Comm, 2015, 17(34):6566-6574
[52] Trask A V, Motherwell W D S, Jones W. Pharmaceutical cocrystallization:Engineering a remedy for caffeine hydration[J]. Crystal Growth & Design, 2005, 5(3):1013-1021
[53] Sangtani E, Sahu S K, Thorat S H, et al. Furosemide cocrystals with pyridines:An interesting case of color cocrystal polymorphism[J]. Crystal Growth & Design, 2015, 15(12):5858-5872
|