[1] Khamar D, Zeglinski J, Mealey D, et al. Investigating the role of solvent-solute interaction in crystal nucleation of salicylic acid from organic solvents[J]. Journal of the American Chemical Society, 2014, 136(33):11664-11673
[2] Chattopadhyay S, Erdemir D, Evans J M B, et al. SAXS study of the nucleation of glycine crystals from a supersaturated solution[J]. Crystal Growth & Design, 2005, 5(2):523-527
[3] Jackson R N, Golden S M, van Erp P B G, et al. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli[J]. Science, 2014, 345(6203):1473-1479
[4] Mulepati S, Heroux A, Bailey S. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target[J]. Science, 2014, 345(6203):1479-1484
[5] Zhao S, Gong P, Luo S, et al. Beryllium-Free Rb3Al3B3O10F with reinforced inter layer bonding as a deep-ultraviolet nonlinear optical crystal[J]. Journal of the American Chemical Society, 2015,137(6):2207-2210
[6] Schiotz J, DiTolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes[J]. Nature, 1998, 391(6667):561-563
[7] Mullin J W. Crystallization[M]. Oxford:Butterworth-Heinemann, 2001
[8] Davey R J, Schroeder S L M, ter Horst J H. Nucleation of organic crystalsa molecular perspective[J]. Angewandte Chemie-International Edition, 2013, 52(8):2166-2179
[9] Kelton K F, Frenkel D. Preface:Special topic on nucleation:New concepts and discoveries[J]. Journal of Chemical Physics, 2016, 145(21):211501
[10] Davey R J, Garside J. From molecules to crystallizers[M]. Oxford:Butterworth-Heinemann,2000
[11] Kashchiev D. Nucleation:Basic theory with applications[M]. Oxford:Butterworth-Heinemann, 2000
[12] Kashchiev D, van Rosmalen G M. Review:Nucleation in solutions revisited[J]. Crystal Resesrch Technology, 2003, 38(7/8):555-574
[13] Davey R J, Schroeder S L, ter Horst J H. Nucleation of organic crystals-A molecular perspective[J]. Angewandte Chemie-International Edition, 2013, 52(8):2166-2179
[14] Sharaf M A, Dobbins R A. A comparison of measured nucleation rates with the predictions of several theories of homogeneous nucleation[J]. Journal of Chemical Physics, 1982, 77(3):1517-1526
[15] Strey R, Wagner P E, Schmeling T. Homogeneous nucleation rates for n-alcohol vapors measured in a two-piston expansion chamber[J]. Chemischer Informationsdienst, 1986, 17(27):2325-2335
[16] Bernstein J, Davey R J, Henck J O. Concomitant polymorphs[J]. Angewandte Chemie International Edition, 1999, 38(23):3440-3461
[17] Desiraju G R. Crystal engineering:Outlook and prospects[J]. Currentence, 2001, 81(8):1038-1042
[18] Erdemir D, Lee A Y, Myerson A S. Nucleation of crystals from solution:Classical and two-step models[J]. Accounts of Chemical Research, 2009, 42(5):621-629
[19] Gebauer D, Kellermeier M, Gale J D, et al. Pre-Nucleation clusters as solute precursors in crystallisation[J]. Chemical Society Reviews, 2014, 43(7):2348-2371
[20] Gebauer D, Völkel A, Cölfen H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909):1819-1822
[21] Myerson A S, Trout B L. Nucleation from solution[J]. Science, 2013, 341(6148):855-856
[22] Vekilov P G. Nucleation[J]. Crystal Growth & Design, 2010,10(12):5007-5019
[23] McCrone W C. Polymorphism[J]. Physics and chemistry of the organic solid state, 1965, 2:725-767
[24] Byrn S R, Pfeiffer R R, Stowell J G. Solid-State chemistry of drugs[J]. Indiana:SSCI Inc, 1999
[25] Brittain H G. Polymorphism in pharmaceutical solids[M]. New York:CRC Press, 2009
[26] Peschar R, Pop M M, De Ridder D J A, et al. Crystal structures of 1,3-distearoyl-2-oleoylglycerol and cocoa butter in the β(V) phase reveal the driving force behind the occurrence of fat bloom on chocolate[J]. Journal of Physical Chemistry B, 2004, 108(40):15450-15453
[27] Cruz-Cabeza A J, Bernstein J. Conformational polymorphism[J]. Chemical Reviews, 2014, 114(4):2170-2191
[28] Liebig J, Wohler F. Untersuchungen iiber das Radical der Benzoesaure[J]. Pharm Anntiinflam, 1832, 249:514
[29] David W I F, Shankland K, Pulham C R, et al. Polymorphism in benzamide[J]. Angewandte Chemie-International Edition, 2005, 44(43):7032-7035
[30] Etter M C. Hydrogen bonds as design elements in organic chemistry[J]. Journal of Physical Chemistry B, 1991, 95(12):4601-4610
[31] Weissbuch I, Meir Lahav A, Leiserowitz L. Toward stereochemical control, monitoring, and understanding of crystal nucleation[J]. Crystal Growth & Design, 2003, 3(2):125-150
[32] Davey R J, Blagden N, Righini S, et al. Crystal polymorphism as a probe for molecular self-assembly during nucleation from solutions:The case of 2,6-dihydroxybenzoic acid[J]. Crystal Growth & Design, 2001, 1(1):59-65
[33] Parveen S, Davey R J, Dent G, et al. Linking solution chemistry to crystal nucleation:The case of tetrolic acid[J]. Chemical Communications, 2005, 12(12):1531
[34] Hunter C A, McCabe J F, Spitaleri A. Solvent effects of the structures of prenucleation aggregates of carbamazepine[J]. Cryst Eng Comm, 2012, 14(21):7115-7117
[35] Spitaleri A, Hunter C A, Mccabe J F, et al. A 1H NMR study of crystal nucleation in solution[J]. Crystal Engineering Communication, 2004, 6(80):489-493
[36] Chiarella R A, Gillon A L, Burton R C, et al. The nucleation of inosine:The impact of solution chemistry on the appearance of polymorphic and hydrated crystal forms[J]. Faraday Discussions, 2007, 136(1):179-193
[37] Kulkarni S A, Mcgarrity E S, Meekes H, et al. Isonicotinamide self-association:The link between solvent and polymorph nucleation[J]. Chemical Communications, 2012, 48(41):4983-4985
[38] Tang W, Mo H, Zhang M, et al. Persistent self-association of solute molecules in solution[J]. Journal of Physical Chemistry B, 2017, 121(43):10118-10124
[39] Chang Y, Myerson A S. Diffusivity of glycine in concentrated saturated and supersaturated aqueous solutions[J]. AIChE J, 1986, 32(9):1567-1569
[40] Myerson A S, Lo P Y. Diffusion and cluster formation in supersaturated solutions[J]. Journal of Crystal Growth, 1990, 99(1/4):1048-1052
[41] Gidalevitz D, Feidenhans'l R, Matlis S, et al. Monitoring in situ growth and dissolution of molecular crystals:Towards determination of the growth units[J]. Angewandte Chemie-International Edition, 1997, 36(9):955-959
[42] Huang J, Stringfellow T C, Yu L. Glycine exists mainly as monomers, not dimers, in supersaturated aqueous solutions:Implications for understanding its crystallization and polymorphism[J]. Journal of the American Chemical Society, 2008, 130(42):13973-13980
[43] Tang W, Mo H, Zhang M, et al. Glycine's pH-dependent polymorphism:A perspective from self-association in solution[J]. Crystal Growth & Design, 2017,17(10):5028-5033
[44] Tang W, Zhang M, Mo H, et al. Higher-Order self-assembly of benzoic acid in solution[J]. Crystal Growth & Design,2017, 17(10):5049-5053
[45] Threlfall T. Crystallisation of polymorphs:Thermodynamic insight into the role of solvent[J]. Organic Process Research & Development, 2000, 4(5):384-390
[46] Lahav M, Leiserowitz L. The effect of solvent on crystal growth and morphology[J]. Chemical Engineering Science, 2001, 56(7):2245-2253
[47] Long S, Parkin S, Siegler M A, et al. Polymorphism and phase behaviors of 2-(phenylamino)nicotinic acid[J]. Crystal Growth & Design, 2008, 8(11):4006-4013
[48] Wallace A F, Hedges L O, Fernandezmartinez A, et al. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions[J]. Science, 2013, 341(6148):885-889
[49] Shore J D, Perchak D, Shnidman Y. Simulations of the nucleation of AgBr from solution[J]. Journal of Chemical Physics, 2000, 113(15):6276-6284
[50] Vekilov P G. Dense liquid precursor for the nucleation of ordered solid phases from solution[J]. Crystal Growth & Design, 2004, 4(4):671-685
[51] Galkin O, Pan W, Filobelo L, et al. Two-Step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers[J]. Biophysical Journal, 2007, 93(3):902-913
[52] Asherie N, Lomakin A, Benedek G B. Phase diagram of colloidal solutions[J]. Physical Review Letters, 1996, 77(23):4832-4835
[53] Sommerdijk N A J M, With G D. Biomimetic CaCO3 mineralization using designer molecules and interfaces[J]. Chemical Reviews, 2008, 108(11):4499-4550
[54] Garetz B A, Matic J, Myerson A S. Polarization switching of crystal structure in the nonphotochemical light-induced nucleation of supersaturated aqueous glycine solutions[J]. Physical Review Letters, 2002, 89(17):175501
[55] Pan W, Kolomeisky A B, Vekilov P G. Nucleation of ordered solid phases of proteins via a disordered high-density state:Phenomenological approach[J]. The Journal of Chemical Physics, 2005, 122(17):174905
[56] Chen J, Sarma B, Evans J M B, et al. Pharmaceutical crystallization[J]. Crystal Growth & Design, 2011, 11(4):887-895
[57] Betts F, Posner A S. An X-ray radial distribution study of amorphous calcium phosphate[J]. Materials Research Bulletin, 1974, 9(3):353-360
[58] And K O, Atsuo I. Cluster growth model for hydroxyapatite[J]. Chemistry of Materials, 1998, 10(11):3346-3351
[59] Gebauer D, Cölfen H. Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6(6):564-584
[60] Desiraju G R. Supramolecular synthons in crystal engineering-A new organic synthesis[J]. Angewandte Chemie International Edition, 1995, 34(21):2311-2327
[61] Duggirala N K, Perry M L, Almarsson O, et al. Pharmaceutical cocrystals:Along the path to improved medicines[J]. Chemical Communications, 2016, 52(4):640-655
[62] Qiao N, Li M, Schlindwein W, et al. Pharmaceutical cocrystals:An overview[J]. International journal of pharmaceutics, 2011, 419(1):1-11
[63] Dunitz J D, Gavezzotti A. Supramolecular synthons:Validation and ranking of intermolecular interaction energies[J]. Crystal Growth & Design, 2012, 12(12):5873-5877
[64] Aakeröy C B, Baldrighi M, Desper J, et al. Supramolecular hierarchy among halogen-bond donors[J]. Chemistry, 2013, 19(48):16240-16247
[65] Aakeröy C B, Epa K N, Forbes S, et al. Competing hydrogen-bond donors:Phenols vs. cyanooximes[J]. Cryst Eng Comm, 2013, 15(30):5946-5949
[66] Gavezzotti A. Molecular aggregation of acetic acid in a carbon tetrachloride solution:A molecular dynamics study with a view to crystal nucleation[J]. Chemistry-A European Journal, 1999, 5(2):567-576
[67] Gavezzotti A, Filippini G, Kroon J, et al. The crystal polymorphism of tetrolic acid (CH3C-CCOOH):A molecular dynamics study of precursors in solution, and a crystal structure generation[J] Chemistry-A European Journal, 1997, 3(6):893-899
[68] Bernstein J. Polymorphism in molecular crystals[M]. Oxford University Press, 2008
[69] Reeves L W. Studies of hydrogen bonding in carboxylic acids[J]. Transactions of the Faraday Society, 1959, 55:1684-1688
[70] Gavezzotti A, Filippini G. Geometry of the intermolecular X-H…Y (X, Y=N, O) hydrogen bond and the calibration of empirical hydrogen-bond potentials[J]. Journal of Physical Chemistry, 1994, 98(18):4831-4837
[71] Bernstein J, Davis R E, Shimoni L, et al. Patterns in hydrogen bonding:Functionality and graph set analysis in crystals[J]. Angewandte Chemie International Edition, 1995, 34(15):1555-1573
[72] Kulkarni S, McGarrity E, Meeks H, et al. Isonicotinamide self-association:The link between solvent and polymorph nucleation[J]. Chemical Communications, 2012, 48(41):4983-4985
[73] Parveen S, Davey R, Dent G, et al. Linking solution chemistry to crystal nucleation:the case of tetrolic acid[J]. Chemical Communications, 2005, (12):1531-1533
|