[1] NIU H, PANG Z, FALLAH N, et al. Diversity of microbial communities and soil nutrients in sugarcane rhizosphere soil under water soluble fertilizer[J]. PLoS One, 2021, doi:10.1371/journal.pone.0245626
[2] XIE C, ZHANG T, WANG X. Solid-liquid phase equilibria in aqueous solutions of four common fertilizers at 303.2 K and atmospheric pressure[J]. Fluid Phase Equilibria, 2018, 474:131-140
[3] SUN G, HU T, LIU X, et al. Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions[J]. Agricultural Water Management, 2022, doi:10.1016/j.agwat.2021.107296
[4] YANG G, ZHAO H, CHEN Q, et al. Potassium chloride-modified urea phosphate with response surface optimization and its application effect on maize in saline-alkali soil[J]. ACS Omega, 2020, 5(28):17255-17265
[5] PAWAR N, SAHA A, NANDAN N, et al. Solution cocrystallization:A scalable approach for cocrystal production[J]. Crystals, 2021, doi:10.3390/cryst11030303
[6] GUI L, YANG H, HUANG H. Liquid solid fluidized bed crystallization granulation technology:Development, applications, properties, and prospects[J]. Journal of Water Process Engineering, 2022, doi:10.1016/j.jwpe.2021.102513
[7] GAGNIERE E, MANGIN D, PUEL F, et al. Formation of co-crystals:Kinetic and thermodynamic aspects[J]. Journal of Crystal Growth, 2009, 311(9):2689-2695
[8] YANG H Y, RASMUSON A C. Phase equilibrium and mechanisms of crystallization in liquid-liquid phase separating system[J]. Fluid Phase Equilibria, 2015, 385:120-128
[9] WALAS S M. Phase Equilibria in Chemical Engineering[M]. Britain:Butterworth-Heinemann,1985
[10] 蒋成君, 程桂林. 共结晶分离技术研究进展[J]. 化工进展, 2020, 39(1):311-319 JIANG Chengjun, CHENG Guilin. Progress in co-crystallization as a separation technology[J]. Chemical Industry and Engineering Progress, 2020, 39(1):311-319(in Chinese)
[11] KHAN H I. Appraisal of biofertilizers in rice:To supplement inorganic chemical fertilizer[J]. Rice Science, 2018, 25(6):357-362
[12] ASSIMI T E, BENIAZZA R, RAIHANE M, et al. Overview on progress in polysaccharides and aliphatic polyesters as coating of water-soluble fertilizers[J]. Journal of Coatings Technology and Research, 2022, 19(4):989-1007
[13] 胡雪, 朱静, 王睿哲, 等. (NH2)2CO-NH4H2PO4-H2O三元系10℃相平衡研究[J]. 无机盐工业, 2019, 51(5):41-44 HU Xue, ZHU Jing, WANG Ruizhe, et al. Research on phase equilibrium of ternary system of(NH2)2CO-NH4H2PO4-H2O at 10℃[J]. Inorganic Chemicals Industry, 2019, 51(5):41-44(in Chinese)
[14] 胡雪. 常压下(NH2)2CO-NH4H2PO4-KCl-H2O在283.15 K的相平衡研究[D].贵阳:贵州大学, 2019 HU Xue. Phase equilibrium study of (NH2)2CO-NH4H2PO4-KCl-H2O at 283.15 K under atmospheric pressure[D]. Guiyang:Guizhou University, 2019(in Chinese)
[15] 杨家敏, 朱静, 胡雪, 等. 283.15 K下三元KCl-NH4Cl-H2O和KH2PO4-NH4H2PO4-H2O体系固-液相平衡测定与关联[J]. 无机盐工业, 2021, 53(1):30-35 YANG Jiamin, ZHU Jing, HU Xue, et al. Determination and correlation for solid-liquid phase equilibrium of ternary KCl-NH4Cl-H2O and KH2PO4-NH4H2PO4-H2O systems at 283.15 K[J]. Inorganic Chemicals Industry, 2021, 53(1):30-35(in Chinese)
[16] 杨家敏. KCl-NH4H2PO4-CO(NH2)2-H2O体系在283.15 K下固-液相平衡研究[D]. 贵阳:贵州大学, 2020 YANG Jiamin. Research on the solid-liquid phase equilibrium of KCl-NH4H2PO4-CO(NH2)2-H2O system at 283.15 K[D]. Guiyang:Guizhou University, 2020 (in Chinese)
[17] 吴强, 胡雪, 朱静, 等. KH2PO4-KCl-H2O、NH4H2PO4-NH4Cl-H2O三元体系283.15 K相平衡研究[J]. 无机盐工业, 2020, 52(11):24-28 WU Qiang, HU Xue, ZHU Jing, et al. Phase equilibrium of KH2PO4-KCl-H2O and NH4H2PO4-NH4Cl-H2O ternary system at 283.15 K[J]. Inorganic Chemicals Industry, 2020, 52(11):24-28(in Chinese)
[18] 邓文清. K+, NH4+//Cl-, H2PO4-, (NH2)2CO-H2O在313.15 K下固-液相平衡研究[D]. 贵阳:贵州大学, 2022 DENG Wenqing. Solid-liquid phase equilibrium study of K+, NH4+//Cl-, H2PO4-, (NH2)2CO-H2O at 313.15 K[D]. Guiyang:Guizhou University, 2022(in Chinese)
[19] 樊小娟, 朱静, 邓文清, 等. 交互四元体系K+, NH4+//Cl-, H2PO4--H2O在313.15 K时相平衡研究[J]. 无机盐工业, 2022, 54(10):102-108 FAN Xiaojuan, ZHU Jing, DENG Wenqing, et al. Study on phase equilibria of reciprocal quaternary system of K+, NH4+//Cl-, H2PO4--H2O at 313.15 K[J]. Inorganic Chemicals Industry, 2022, 54(10):102-108(in Chinese)
[20] 王肖丽, 朱静, 吴强, 等. NH4+,K+//H2PO4-,CO(NH2)2-H2O四元体系298.15 K相平衡研究[J]. 化学工程, 2021, 49(8):39-44 WANG Xiaoli, ZHU Jing, WU Qiang, et al. Study on quaternary phase equilibrium of NH4+,K+//H2PO4-,CO(NH2)2-H2O system at 298.15 K[J].Chemical Engineering(China), 2021, 49(8):39-44 (in Chinese)
[21] 黄林川, 李天祥, 杨家敏, 等. 三元体系KH2PO4-CO(NH2)2-H2O在283.15 K的固液相平衡测定与关联[J]. 化学工业与工程, 2021, 38(3):64-69 HUANG Linchuan, LI Tianxiang, YANG Jiamin, et al. Determination and correlation of solid-liquid equilibrium of ternary system KH2PO4-CO(NH2)2-H2O at 283.15 K[J]. Chemical Industry and Engineering, 2021, 38(3):64-69(in Chinese)
[22] 黄林川. KCl-NH4H2PO4-(NH2)2CO-H2O体系在353.15 K下的相平衡研究[D]. 贵阳:贵州大学, 2021 HUANG Linchuan. Study on phase equilibrium of KCl-NH4H2PO4-(NH2)2CO-H2O system at 353.15 K[D]. Guiyang:Guizhou University, 2021 (in Chinese)
[23] 陈艳, 李天祥, 王肖丽, 等. 353.15 K下三元体系KCl-KH2PO4-H2O和KH2PO4-CO(NH2)2-H2O固液相平衡测定与关联[J]. 化学工程, 2022, 50(6):43-49 CHEN Yan, LI Tianxiang, WANG Xiaoli, et al. Determination and correlation of solid-liquid equilibria for ternary systems KCl-KH2PO4-H2O and KH2PO4-CO(NH2)2-H2O at 353.15 K[J]. Chemical Engineering (China), 2022, 50(6):43-49(in Chinese)
[24] 张逢星,魏小兰,崔斌,等. N-P-K复肥四元体系KCl-KH2PO4-CO(NH2)2-H2O在298.2 K 相图[J]. 盐湖研究, 1996, 4(1):59-62 ZHANG Fengxing, WEI Xiaolan, CUI Bin, et al. Phase diagram of the quaternary system KCI-KH2PO4-CO (NH2)2-H2O at 298.2 K[J]. Journal of Salt Lake Research, 1996, 4(1):59-62 (in Chinese)
[25] YU X, ZENG Y, YAO H, et al. Metastable phase equilibria in the aqueous ternary systems KCl + MgCl2 + H2O and KCl + RbCl + H2O at 298.15 K[J]. Journal of Chemical & Engineering Data, 2011, 56(8):3384-3391
[26] 赵长伟, 马沛生, 郭瓦力, 等. KCl-NH4Cl-H2O三元水盐体系溶解度的研究[J]. 化学工业与工程, 2003, 20(3):145-149 ZHAO Changwei, MA Peisheng, GUO Wali, et al. Study on the solubility of the three-component system KCl-NH4Cl-H2O[J]. Chemical Industry and Engineering, 2003, 20(3):145-149(in Chinese)
[27] ZHAO B, GENG G, CHEN J, et al. The ternary system phase equilibrium of KCl-NH4Cl-H2O at 80℃[J]. Advanced Materials Research, 2013, 834/835/836:519-522
[28] SHEN W, REN Y, ZHANG X, et al. Solid-liquid phase equilibrium for the ternary system (potassium chloride+potassium dihydrogen phosphate+water) at (298.15 and 313.15) K[J]. Journal of Chemical & Engineering Data, 2015, 60(7):2070-2078
[29] ZHANG Y, YU M, LIU J, et al. Solid-liquid equilibrium, structural features and separation process of ammonium potassium dihydrogen phosphate solid solution[J]. Chemical Physics, 2021, doi:10.1016/j.chemphys.2021.111109
[30] SILCOCK E. Solubility of inorganic and organic compounds V3:Ternary and multicomponent systems of inorganic substances[M].Britain:Pergamon,1979
[31] EL HANTATI S, NOUR Z, DINANE A, et al. Thermodynamic properties data of ternary system NH4Cl-NH4H2PO4-H2O at 298.15 K including the solubility data[J]. Journal of Molecular Liquids, 2022, doi:10.1016/j.molliq.2022.119381
[32] 何婷婷. Na+, NH4+//Cl-, H2PO4-, SO42--H2O子体系稳定相平衡研究[D]. 银川:宁夏大学, 2018 HE Tingting. Research on stable equilibria in quinary system Na+, NH4+//Cl-, H2PO4-, SO42--H2O and its sub-system[D]. Yinchuan:Ningxia University, 2018 (in Chinese)
[33] 邓天龙, 周桓, 陈侠. 水盐体系相图及应用[M]. 北京:化学工业出版社, 2013
[34] 袁砚, 郭永福, 吴伟, 等. 废水中低浓度氨氮的甲醛法快速测定[J]. 工业水处理, 2014, 34(10):73-75 YUAN Yan, GUO Yongfu, WU Wei, et al. Rapid determination of low-concentration ammonia nitrogen in wastewater by formaldehyde method[J]. Industrial Water Treatment, 2014, 34(10):73-75(in Chinese)
[35] 严一乾. 钼锑抗分光光度法测定水中总磷的影响因素分析[J]. 绿色科技, 2017(2):32-33, 38 YAN Yiqian. Analysis of influencing factors on determination of total phosphorus in water by molybdenum antimony spectrophotometry[J]. Journal of Green Science and Technology, 2017(2):32-33, 38(in Chinese)
[36] 辛欣. 硫氰酸铵容量法测定氯离子含量方法的改进研究[J]. 化工管理, 2017(27):37-39 XIN Xin. Improvement of ammonium thiocyanate volumetric method for determination of chloride ion content[J]. Chemical Enterprise Management, 2017(27):37-39(in Chinese)
[37] FAN X, LI T, WANG X, et al. Measurement and correlation of solid-liquid equilibrium of ternary system KCl-CO(NH2)2-H2O at 313.15 K and 353.15 K[J]. Journal of Molecular Liquids, 2022, doi:10.1016/j.molliq.2022.119951
[38] 刘光启, 马连湘, 项曙光. 化学化工特性数据手册.无机卷[M]. 北京:化学工业出版社, 2002 LIU Guangqi, MA Lianxiang, XIANG Shuguang, Chemical Properties Data Book. Inorganic Volume[M]. BeiJing:Chemical Industry Press, 2002 (in Chinese)
[39] PITZER K S, MAYORGA G. Thermodynamics of electrolytes. Ⅱ. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. The Journal of Physical Chemistry, 1973, 77(19):2300-2308
[40] HARVIE C, EUGSTER H, WEARE J. Mineral equilibria in the six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O at 25℃. Ⅱ:Compositions of the saturated solutions[J]. Geochimica et Cosmochimica Acta, 1982, 46(9):1603-1618
[41] MØLLER N. The prediction of mineral solubilities in natural waters:A chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration[J]. Geochimica et Cosmochimica Acta, 1988, 52(4):821-837
[42] JI X, LU X, ZHANG L, et al. A further study of solid-liquid equilibrium for the NaCl-NH4Cl-H2O system[J]. Chemical Engineering Science, 2000, 55(21):4993-5001
[43] EL GUENDOUZI M, BENBIYI A. Study of di-hydrogen (Na; K or NH4) orthophosphates in aqueous solutions at temperatures from 298.15 K to 353.15 K[J]. Fluid Phase Equilibria, 2016, 408:223-231
|