[1] 李艳梅,郝国栋,崔平,等.超级电容器电极材料研究进展[J].化学工业与工程, 2020, 37(1):17-33 LI Yanmei, HAO Guodong, CUI Ping, et al. Research progress of electrode material for supercapacitor[J]. Chemical Industry and Engineering, 2020, 37(1):17-33(in Chinese)
[2] 虞圣盼,黄成德.中空棒状MOF及其衍生的磷酸盐类电池型电容性能的研究[J].化学工业与工程, 2020, 37(5):53-63 YU Shengpan, HUANG Chengde. Capacitor performance of hollow rod-shaped metal-organic framework and its derived metal phosphate[J]. Chemical Industry and Engineering, 2020, 37(5):53-63(in Chinese)
[3] LU W, SHEN J, ZHANG P, et al. Construction of CoO/Co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors[J]. Angewandte Chemie (International Ed in English), 2019, 58(43):15441-15447
[4] LU W, YUAN Z, XU C, et al. Construction of mesoporous Cu-doped Co9S8 rectangular nanotube arrays for high energy density all-solid-state asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7(10):5333-5343
[5] DELBARI S A, GHADIMI L S, HADI R, et al. Transition metal oxide-based electrode materials for flexible supercapacitors:A review[J]. Journal of Alloys and Compounds, 2021, doi:10.1016/j.jallcom.2021.159347
[6] DAI M, ZHAO D, WU X. Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors[J]. Chinese Chemical Letters, 2020, 31(9):2177-2188
[7] RAKHI R B, CHEN W, CHA D, et al. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance[J]. Nano Letters, 2012, 12(5):2559-2567
[8] RAKHI R, CHEN W, CHA D, et al. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance[J]. Nano Letter, 2012, 12(5):2559-2567
[9] CHEN H, JIANG J, ZHANG L, et al. Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors[J]. Journal of Power Sources, 2014, 248:28-36
[10] VIJAYAKUMAR S, LEE S H, RYU K S. Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance[J]. Electrochimica Acta, 2015, 182:979-986
[11] XU Y, WANG X, AN C, et al. Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(39):16480-16488
[12] KUMAR S, SAEED G, KIM N H, et al. Fabrication of Co-Ni-Zn ternary Oxide@NiWO4 core-shell nanowire arrays and Fe2O3-CNTs@GF for ultra-high-performance asymmetric supercapacitor[J]. Composites Part B:Engineering, 2019, doi:10.1016/j.compositesb.2019.107223
[13] BANDYOPADHYAY P, SAEED G, KIM N H, et al. Zinc-nickel-cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2019.123357
[14] HUSSAIN I, LAMIEL C, QIN N, et al. Development of vertically aligned trimetallic Mg-Ni-Co oxide grass-like nanostructure for high-performance energy storage applications[J]. Journal of Colloid and Interface Science, 2021, 582:782-792
[15] LI L, ZHANG Y, SHI F, et al. Spinel Manganese-nickel-cobalt ternary oxide nanowire array for high-performance electrochemical capacitor applications[J]. ACS Applied Materials&Interfaces, 2014, 6(20):18040-18047
[16] TAMADDONI SARAY M, HOSSEINI H. Mesoporous MnNiCoO4@MnO2 core-shell nanowire/nanosheet arrays on flexible carbon cloth for high-performance supercapacitors[J]. Electrochimica Acta, 2016, 222:505-517
[17] HAN C, XU X, MU H, et al. Construction of hierarchical sea urchin-like Manganese substituted nickel cobaltite@tricobalt tetraoxide core-shell microspheres on nickel foam as binder-free electrodes for high performance supercapacitors[J]. Journal of Colloid and Interface Science, 2021, 596:89-99
[18] TANG X, LUI Y, ZHANG B, et al. Venus flytrap-like hierarchical NiCoMn-O@NiMoO4@C nanosheet arrays as free-standing core-shell electrode material for hybrid supercapacitor with high electrochemical performance[J]. Journal of Power Sources, 2020, doi:10.1016/j.jpowsour.2020.228977
[19] YANG M, WANG X, CHEN Y, et al. NiCo2O4 nanowire-supported NiCoMnS4 nanosheets on carbon cloth as a flexible cathode for high-performance aqueous supercapacitors[J]. Electrochimica Acta, 2021, doi:10.1016/j.electacta.2021.139324
[20] ZHAO J, HOU S, BAI Y, et al. Multilayer dodecahedrons Zn-Co sulfide for supercapacitors[J]. Electrochimica Acta, 2020, doi:10.1016/j.electacta. 2020.136714
[21] WANG X, WANG T, SU L, et al. Synthesis of CoxNi1-xS2 electrode material with a greatly enhanced electrochemical performance for supercapacitors by in situ solid-state transformation[J]. Journal of Alloys and Compounds, 2019, 803:950-957
[22] LE K, GAO M, LIU W, et al. MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors[J]. Electrochimica Acta, 2019, doi:10.1016/j.electacta.2019.134826
[23] XU J, XIANG C, FANG S, et al. Template strategy to synthesize porous Mn-Co-S nanospheres electrode for high-performance supercapacitors[J]. Journal of Energy Storage, 2021, doi; 10.1016/j.est.2021. 103267
[24] LI G, CHANG Z, LI T, et al. Hierarchical Mn-Co sulfide nanosheets on nickel foam by electrochemical co-deposition for high-performance pseudocapacitors[J]. Ionics, 2019, 25(8):3885-3895
[25] AHMED N, ALI B A, RAMADAN M, et al. Three-dimensional interconnected binder-free Mn-Ni-S nanosheets for high performance asymmetric supercapacitor devices with exceptional cyclic stability[J]. ACS Applied Energy Materials, 2019, 2(5):3717-3725
[26] CHENG C, KONG D, WEI C, et al. Self-template synthesis of hollow ellipsoid Ni-Mn sulfides for supercapacitors, electrocatalytic oxidation of glucose and water treatment[J]. Dalton Transactions (Cambridge, England:2003), 2017, 46(16):5406-5413
[27] WAN L, YUAN Y, LIU J, et al. A free-standing Ni-Mn-S@NiCo2S4 core-shell heterostructure on carbon cloth for high-energy flexible supercapacitors[J]. Electrochimica Acta, 2021, doi:10.1016/j.electacta. 2020.137579
[28] SAHOO S, MONDAL R, LATE D J, et al. Electrodeposited Nickel Cobalt Manganese based mixed sulfide nanosheets for high performance supercapacitor application[J]. Microporous and Mesoporous Materials, 2017, 244:101-108
[29] DU X, DING Y, ZHANG X. MOF-derived Zn-Co-Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis[J]. Green Energy&Environment, 2021, doi:10.1016/j.gee.2021.09.007
[30] ZHU M, CAI W, WANG H, et al. Rational construction of MOF-derived Zn-Co-O/NiCo-LDH core/shell nanosheet arrays on nickel foam for high-performance supercapacitors[J]. Journal of Alloys and Compounds, 2021, doi:10.1016/j.jallcom. 2021.160931
[31] WANG W, LI X, ZHANG P, et al. Preparation of NiCo2O4@CoS heterojunction composite as electrodes for high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry, 2021, doi:10.1016/j.jelechem.2021. 115257
[32] KUMAR S, RIYAJUDDIN S, AFSHAN M, et al. In-situ growth of urchin Manganese sulfide anchored three-dimensional graphene (γ-MnS@3DG) on carbon cloth as a flexible asymmetric supercapacitor[J]. The Journal of Physical Chemistry Letters, 2021, 12(28):6574-6581
[33] ZHANG Z, HUANG X, LI H, et al. All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo2S4@MnS and active carbon[J]. Journal of Energy Chemistry, 2017, 26(6):1260-1266
[34] QIN Q, CHEN L, WEI T, et al. MoS2/NiS yolk-shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor[J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, doi:10.1002/smll.201803639
[35] LIU G, WANG B, LIU T, et al. 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(4):1822-1831
|