[1] ZHANG L, ZHAO X. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9):2520-2531
[2] LI Z, GUO D, LIU Y, et al. Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2020.125418
[3] DA SILVA L M, CESAR R, MOREIRA C M R, et al. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials[J]. Energy Storage Materials, 2020, 27:555-590
[4] WANG J, ZHANG X, LI Z, et al. Recent progress of biomass-derived carbon materials for supercapacitors[J]. Journal of Power Sources, 2020, doi:10.1016/j.jpowsour.2020.227794
[5] BÉGUIN F, PRESSER V, BALDUCCI A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials (Deerfield Beach, Fla), 2014, 26(14):2219-2251, 2283
[6] 李艳梅, 郝国栋, 崔平, 等. 超级电容器电极材料研究进展[J]. 化学工业与工程, 2020, 37(1):17-33 LI Yanmei, HAO Guodong, CUI Ping, et al. Research progress of electrode material for supercapacitor[J]. Chemical Industry and Engineering, 2020, 37(1):17-33(in Chinese)
[7] 商梦瑶, 黄成德. 基于镍材料的柔性固态超级电容器研究进展[J]. 化学工业与工程, 2020, 37(3):74-79 SHANG Mengyao, HUANG Chengde. Research progress of Ni-based materials for flexible solid-state supercapacitors[J]. Chemical Industry and Engineering, 2020, 37(3):74-79(in Chinese)
[8] WANG Q, YAN J, FAN Z. Carbon materials for high volumetric performance supercapacitors:Design, progress, challenges and opportunities[J]. Energy & Environmental Science, 2016, 9(3):729-762
[9] YANG Z, TIAN J, YIN Z, et al. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor:A review[J]. Carbon, 2019, 141:467-480
[10] ZHENG S, WU Z, WANG S, et al. Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors[J]. Energy Storage Materials, 2017, 6:70-97
[11] ISHIMOTO S, ASAKAWA Y, SHINYA M, et al. Degradation responses of activated-carbon-based EDLCs for higher voltage operation and their factors[J]. Journal of the Electrochemical Society, 2009, doi:10.1149/1.3126423
[12] NAOI K. ‘Nanohybrid capacitor’:The next generation electrochemical capacitors[J]. Fuel Cells, 2010, 10(5):825-833
[13] RUCH P W, CERICOLA D, FOELSKE A, et al. A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages[J]. Electrochimica Acta, 2010, 55(7):2352-2357
[14] CAZORLA-AMORÓS D, LOZANO-CASTELLÓ D, MORALLÓN E, et al. Measuring cycle efficiency and capacitance of chemically activated carbons in propylene carbonate[J]. Carbon, 2010, 48(5):1451-1456
[15] ZHOU C, SZPUNAR J A, CUI X. Synthesis of Ni/graphene nanocomposite for hydrogen storage[J]. ACS Applied Materials & Interfaces, 2016, 8(24):15232-15241
[16] DAI J, ZHU Y, CHEN Y, et al. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis[J]. Nature Communications, 2022, doi:10.1038/s41467-022-28843-2
[17] PHAM V H, DANG T, SINGH K, et al. A catalytic and efficient route for reduction of graphene oxide by hydrogen spillover[J]. Journal of Materials Chemistry A, 2013, 1(4):1070-1077
[18] AMORIM C, KEANE M A. Catalytic hydrodechlorination of chloroaromatic gas streams promoted by Pd and Ni:The role of hydrogen spillover[J]. Journal of Hazardous Materials, 2012, 211/212:208-217
[19] KANG J, WANG M, LU C, et al. Platinum atoms and nanoparticles embedded porous carbons for hydrogen evolution reaction[J]. Materials (Basel, Switzerland), 2020, doi:10.3390/ma13071513
[20] YADAV R, SINGH H, SINHA A K. Ultra-fine size-controlled Pt (111) nanoparticles supported on mesoporous titania as an efficient photoelectrocatalyst for hydrogen evolution[J]. Applied Surface Science, 2019, doi:10.1016/j.apsusc.2019.07.267
[21] QURESHI M, GARCIA-ESPARZA A T, JEANTELOT G, et al. Catalytic consequences of ultrafine Pt clusters supported on SrTiO3 for photocatalytic overall water splitting[J]. Journal of Catalysis, 2019, 376:180-190
[22] ZHENG Z, CHEN M, ZHENG X, et al. Hydrogen spillover facilitating reduction of surface oxygen species on porous carbon[J]. ChemistrySelect, 2021, 6(9):2178-2183
[23] LIU K, JIAO M, CHANG P, et al. Pitch-based porous aerogel composed of carbon onion nanospheres for electric double layer capacitors[J]. Carbon, 2018, 137:304-312
[24] XU Z, XIA B, WANG W, et al. Graphitization of aerogel-like carbons in molten sodium metal[J]. Carbon, 2011, 49(10):3385-3387
[25] SHIN H, KIM K K, BENAYAD A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Advanced Functional Materials, 2009, 19(12):1987-1992
[26] YUAN S, HUANG X, WANG H, et al. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance[J]. Journal of Energy Chemistry, 2020, 51:396-404
[27] GERBER I C, SERP P. A theory/experience description of support effects in carbon-supported catalysts[J]. Chemical Reviews, 2020, 120(2):1250-1349
|