[1] Choi N S, Chen Z, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition, 2012, 51(40):9994-10024
[2] Lu Q, Chen J, Xiao J. Nanostructured electrodes for high-performance pseudocapacitors[J]. Angewandte Chemie International Edition, 2013, 52(7):1882-1889
[3] Yaghi O M, Li H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41):10401-10402
[4] Bendi R, Kumar V, Bhavanasi V, et al. Metal organic framework-derived metal phosphates as electrode materials for supercapacitors[J]. Advanced Energy Materials, 2016, doi:10.1002/aenm.201501833
[5] Li J, Li J, Song L, et al. Microporous metal-organic framework with 1D helical chain building units:Synthesis, structure and gas sorption properties[J]. Inorganic Chemistry Communications, 2017, 83:88-91
[6] Li J, Kuppler R J, Zhou H. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1477-1504
[7] Rodenas T, Luz I, Prieto G, et al. Metal-Organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1):48-55
[8] Wu H, Xia B, Yu L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nature Communications, 2015, doi:10.1038/ncomms7512
[9] Wang Q, Li J, Zhang M, et al. A luminescent Eu(Ⅲ)-based metal-organic framework as a highly effective sensor for cation and anion detections[J]. Sensors and Actuators B:Chemical, 2018, 258:358-364
[10] Zhang J, Yue D, Xia T, et al. A luminescent metal-organic framework film fabricated on porous Al2O3 substrate for sensitive detecting ammonia[J]. Microporous and Mesoporous Materials, 2017, 253:146-150
[11] Hashemi B, Zohrabi P, Raza N, et al. Metal-Organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media[J]. Trends in Analytical Chemistry, 2017, 97:65-82
[12] Lee J, Farha O K, Roberts J M, et al. Metal-Organic framework materials as catalysts[J]. Chemical Society Reviews, 2009, 38(5):1450-1459
[13] Foster M E, Azoulay J D, Wong B M, et al. Novel metal-organic framework linkers for light harvesting applications[J]. Chemical Science, 2014, 5(5):2081-2090
[14] Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2010, 9(2):172-178
[15] Taylor-Pashow K M L, Della Rocca J, Xie Z, et al. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery[J]. Journal of the American Chemical Society, 2009, 131(40):14261-14263
[16] Liu B, Shioyama H, Jiang H, et al. Metal-Organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon, 2010, 48(2):456-463
[17] Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, doi:10.1002/aenm.201300816
[18] Yi H, Wang H, Jing Y, et al. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life[J]. Journal of Power Sources, 2015, 285:281-290
[19] Zeng W, Wang L, Shi H, et al. Metal-Organic-framework-derived ZnO@C@NiCo2O4 core-shell structures as an advanced electrode for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(21):8233-8241
[20] Yan Y, Gu P, Zheng S, et al. Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors[J]. Journal of Materials Chemistry, 2016, 4(48):19078-19085
[21] Liu X, Shi C, Zhai C, et al. Cobalt-Based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material[J]. ACS Applied Materials & Interfaces, 2016, 8(7):4585-4591
[22] Jiao Y, Pei J, Yan C, et al. Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices[J]. Journal of Materials Chemistry, 2016, 4(34):13344-13351
[23] Qu C, Jiao Y, Zhao B, et al. Nickel-Based pillared MOFs for high-performance supercapacitors:Design, synthesis and stability study[J]. Nano Energy, 2016, 26:66-73
[24] Qu C, Liang Z, Jiao Y, et al. "One-for-all" strategy in fast energy storage:Production of pillared MOF nanorod-templated positive/negative electrodes for the application of high-performance hybrid supercapacitor[J]. Small, 2018, doi:10.1002/smll.201800285
[25] Guan C, Liu X, Ren W, et al. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis[J]. Advanced Energy Materials, 2017, do:10.1002/aenm.201602391
[26] Li G, Liu P, Liu R, et al. MOF-Derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors[J]. Dalton Transactions, 2016, 45(34):13311-13316
[27] Wu M, Chen C, Zhou J, et al. MOF-Derived hollow double-shelled NiO nanospheres for high-performance supercapacitors[J]. Journal of Alloys and Compounds, 2018, 734:1-8
[28] Zhang C, Xiao J, Lv X, et al. Hierarchically porous Co3O4/C nanowire arrays derived from a metal-organic framework for high performance supercapacitors and the oxygen evolution reaction[J]. Journal of Materials Chemistry, 2016, 4(42):16516-16523
[29] Li W, Ding K, Tian H, et al. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors[J]. Advanced Functional Materials, 2017, doi:10.1002/adfm. 201702067
[30] Wen P, Gong P, Sun J, et al. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density[J]. Journal of Materials Chemistry A, 2015, 3(26):13874-13883
[31] Srimuk P, Luanwuthi S, Krittayavathananon A, et al. Solid-Type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper[J]. Electrochimica Acta, 2015, 157:69-77
[32] Wei T, Zhang M, Wu P, et al. POM-Based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage[J]. Nano Energy, 2017, 34:205-214
[33] Wang L, Feng X, Ren L, et al. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J]. Journal of the American Chemical Society, 2015, 137(15):4920-4923
[34] Guo S, Zhu Y, Yan Y, et al. (Metal-Organic Framework)-Polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor[J]. Journal of Power Sources, 2016, 316:176-182
[35] Li Y, Yi T, Luo S. Facile synthesis of tremelliform Co3O4@CeO2 hybrid electrodes grown on Ni foam as high-performance electrodes for supercapacitors[J]. Materials Letters, 2018, 233:220-223
[36] You H, Zhang L, Jiang Y, et al. Bubble-Supported engineering of hierarchical CuCo2S4 hollow spheres for enhanced electrochemical performance[J]. Journal of Materials Chemistry, 2018, 6(13):5265-5270
[37] Jayakumar A, Antony R P, Wang R, et al. MOF-Derived hollow cage NixCo3-xO4 and their synergy with graphene for outstanding supercapacitors[J]. Small, 2017, doi:10.1002/smll.201603102
[38] Zhao Y, Liu J, Horn M, et al. Recent advancements in metal organic framework based electrodes for supercapacitors[J]. Science China Materials, 2018, 61(2):159-184
[39] Yang J, Ma Z, Gao W, et al. Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode[J]. Chemistry:A European Journal, 2017, 23(3):631-636
[40] Ghosh S, Maity C K, Nayak G C, et al. A cobalt(Ⅱ) metal-organic framework featuring supercapacitor application[J]. Journal of Solid State Chemistry, 2020, doi:10.1016/j.jssc.2019.121093
[41] Bao W, Mondal A K, Xu J, et al. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors[J]. Journal of Power Sources, 2016, 325:286-291
[42] Li G, Hua X, Liu P, et al. Porous Co3O4 microflowers prepared by thermolysis of metal-organic framework for supercapacitor[J]. Materials Chemistry and Physics, 2015, 168:127-131
[43] Al-Enizi A M, Ahmed J, Ubaidullah M, et al. Utilization of waste polyethylene terephthalate bottles to develop metal-organic frameworks for energy applications:A clean and feasible approach[J]. Journal of Cleaner Production, 2020, doi:10.1016/j.jclepro.2019.119251
[44] Yang Y, Li M, Lin J, et al. MOF-Derived Ni3S4 encapsulated in 3D conductive network for high-performance supercapacitor[J]. Inorganic Chemistry, 2020, 59(4):2406-2412
[45] Wang D, Liang Z, Gao S, et al. Metal-Organic framework-based materials for hybrid supercapacitor application[J]. Coordination Chemistry Reviews, 2020, 404:213093
[46] Gogotsi Y, Penner R M. Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like?[J]. ACS Nano, 2018, 12(3):2081-2083
[47] Yaghi O M, Li H, Groy T L. Construction of porous solids from hydrogen-bonded metal complexes of 1, 3, 5-benzenetricarboxylic acid[J]. Journal of the American Chemical Society, 1996, 118(38):9096-9101
[48] Michaelides A, Skoulika S, Kiritsis V, et al. A self-assembling trinuclear molecular complex of nickel (ii) with benzene-1, 3, 5-tricarboxylic acid[J]. Journal of Chemical Research, Synopses, 1997(6):204-205
[49] Sel K, Demirci S, Meydan E, et al. Benign preparation of metal-organic frameworks of trimesic acid and Cu, Co or Ni for potential sensor applications[J]. Journal of Electronic Materials, 2015, 44(1):136-143
[50] Chen S, Xue M, Li Y, et al. Rational design and synthesis of NixCo3-xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(40):20145-20152
|