[1] Chien H, Cheng W, Wang Y, et al. Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites[J]. Advanced Functional Materials, 2012, 22(23):5038-5043
[2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367
[3] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid:A battery of choices[J]. Science, 2011, 334(6058):928-935
[4] Lu X, Yu M, Wang G, et al. Flexible solid-state supercapacitors:Design, fabrication and applications[J]. Energy and Environmental Science, 2014, 7(7):2160-2181
[5] Zuo W, Li R, Zhou C, et al. Battery-Supercapacitor hybrid devices:Recent progress and future prospects[J]. Advanced Science, 2017, doi:10.1002/advs.201600539
[6] Nithya V D, Sabari Arul N. Progress and development of Fe3O4 electrodes for supercapacitors[J]. Journal of Materials Chemistry, 2016, 4(28):10767-10778
[7] Chen K, Xue D. Materials chemistry toward electrochemical energy storage[J]. Journal of Materials Chemistry, 2016, 4(20):7522-7537
[8] Lin Y, Dong J, Dai J, et al. Facile synthesis of flowerlike LiFe5O8 microspheres for electrochemical supercapacitors[J]. Inorganic Chemistry, 2017, 56(24):14960-14967
[9] Lin Y, Zhang J, Li M, et al. An excellent strategy for synthesis of coral-like ZnFe2O4 particles for capacitive pseudocapacitors[J]. Journal of Alloys and Compounds, 2017, 726:154-163
[10] Gao L, Han E, He Y, et al. Effect of different templating agents on cobalt ferrite (CoFe2O4) nanomaterials for high-performance supercapacitor[J]. Ionics, 2020, 1-12
[11] Fan S, Wang W, Ke H, et al. Facile synthesis of morphology controllable CoFe2O4 particles as high-performance electrode materials[J]. Particle & Particle Systems Characterization, 2018, doi:10.1002/ppsc.201800223
[12] Gao X, Wang W, Bi J, et al. Morphology-Controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor[J]. Electrochimica Acta, 2019, 296:181-189
[13] Vadiyar M M, Kolekar S S, Chang J, et al. Anchoring ultrafine ZnFe2O4/C nanoparticles on 3D ZnFe2O4 nanoflakes for boosting cycle stability and energy density of flexible asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces, 2017, 9(31):26016-26028
[14] Saravanakumar B, Ramachandran S P, Ravi G, et al. Electrochemical performances of monodispersed spherical CuFe2O4 nanoparticles for pseudocapacitive applications[J]. Vacuum, 2019, doi:10.1016/j.vacuum.2019.108798
[15] Shanmugavani A, Kalai Selvan R. Synthesis of ZnFe2O4 nanoparticles and their asymmetric configuration with Ni(OH)2 for a pseudocapacitor[J]. RSC Advances, 2014, 4(51):27022-27029
[16] Wang Z, Zhang X, Li Y, et al. Synthesis of graphene-NiFe2O4 nanocomposites and their electrochemical capacitive behavior[J]. Journal of Materials Chemistry, 2013, 1(21):6393-6399
[17] Zhu F, Liu Y, Yan M, et al. Construction of hierarchical FeCo2O4@MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor[J]. Journal of Colloid and Interface Science, 2018, 512:419-427
[18] Zhu M, Meng D, Wang C, et al. Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property[J]. ACS Applied Materials & Interfaces, 2013, 5(13):6030-6037
[19] Yu L, Hu H, Wu H, et al. Complex hollow nanostructures:Synthesis and energy-related applications[J]. Advanced Materials, 2017, doi:10.1002/adma.201604563
[20] Zardkhoshoui A M, Davarani S S H. Formation of graphene-wrapped multi-shelled NiGa2O4 hollow spheres and graphene-wrapped yolk-shell NiFe2O4 hollow spheres derived from metal-organic frameworks for high-performance hybrid supercapacitors[J]. Nanoscale, 2020, 12(3):1643-1656
[21] Chu D, Li F, Song X, et al. A novel dual-tasking hollow cube NiFe2O4-NiCo-LDH@rGO hierarchical material for high preformance supercapacitor and glucose sensor[J]. Journal of Colloid and Interface Science, 2020, 568:130-138
[22] Li M, Xu W, Wang W, et al. Facile synthesis of specific FeMnO3 hollow sphere/graphene composites and their superior electrochemical energy storage performances for supercapacitor[J]. Journal of Power Sources, 2014, 248:465-473
[23] Jhajharia S K, Manappadan Z, Selvaraj K. Exploring battery-type ZnO/ZnFe2O4 spheres-3D graphene electrodes for supercapacitor applications:Advantage of yolk-shell over solid structures[J]. ChemElectroChem, 2019, 6(23):5819-5828
[24] Wang Y, Su D, Ung A T, et al. Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries[J]. Nanotechnology, 2012, doi:10.1088/0957-4484/23/5/055402
[25] Ren P, Wang Z, Liu B, et al. Highly dispersible hollow nanospheres organized by ultra-small ZnFe2O4 subunits with enhanced lithium storage properties[J]. Journal of Alloys and Compounds, 2020, doi:10.1016/j.jallcom. 2019.152014
[26] Kumar N, Kumar A, Huang G M, et al. Facile synthesis of mesoporous NiFe2O4/CNTS nanocomposite cathode material for high performance asymmetric pseudocapacitors[J]. Applied Surface Science, 2018, 433:1100-1112
[27] Yang S, Han Z, Zheng F, et al. ZnFe2O4 nanoparticles-cotton derived hierarchical porous active carbon fibers for high rate-capability supercapacitor electrodes[J]. Carbon, 2018, 134:15-21
[28] Zhang L, Wei T, Yue J, et al. Ultrasmall and highly crystallized ZnFe2O4 nanoparticles within double graphene networks for super-long life lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(22), 11188-11196
[29] Fu M, Chen W, Ding J, et al. Biomass waste derived multi-hierarchical porous carbon combined with CoFe2O4 as advanced electrode materials for supercapacitors[J]. Journal of Alloys and Compounds, 2019, 782:952-960
[30] Chandel M, Moitra D, Makkar P, et al. Synthesis of multifunctional CuFe2O4-reduced graphene oxide nanocomposite:An efficient magnetically separable catalyst as well as high performance supercapacitor and first-principles calculations of its electronic structures[J]. RSC Advances, 2018, 8(49):27725-27739
[31] Mishra A, Bera G, Mal P, et al. Comparative electrochemical analysis of rGO-FeVO4 nanocomposite and FeVO4 for supercapacitor application[J]. Applied Surface Science, 2019, 488:221-227
[32] Chodankar N R, Dubal D P, Ji S H, et al. Highly efficient and stable negative electrode for asymmetric supercapacitors based on graphene/FeCo2O4 nanocomposite hybrid material[J]. Electrochimica Acta, 2019, 295:195-203
[33] Tabrizi A G, Arsalani N, Mohammadi A, et al. Facile synthesis of a MnFe2O4/rGO nanocomposite for an ultra-stable symmetric supercapacitor[J]. New Journal of Chemistry, 2017, 41(12):4974-4984
[34] Ranjith K S, Raju G S R, Chodankar N R, et al. Electroactive ultra-thin rGO-enriched FeMoO4 nanotubes and MnO2 nanorods as electrodes for high-performance all-solid-state asymmetric supercapacitors[J]. Nanomaterials, 2020, doi:10.3390/nano10020289
[35] Zhang X, Zhu M, Ouyang T, et al. NiFe2O4 nanocubes anchored on reduced graphene oxide cryogel to achieve a 1.8 eV flexible solid-state symmetric supercapacitor[J]. Chemical Engineering Journal, 2019, 360:171-179
[36] Athika M, Prasath A, Sharma A S, et al. Ni/NiFe2O4@carbon nanocomposite involving synergistic effect for high-energy density and high-power density supercapattery[J]. Materials Research Express, 2019, doi:10.1088/2053-1591/ab2c59
[37] Yang C, Sun M, Zhang L, et al. ZnFe2O4@Carbon core-shell nanoparticles encapsulated in reduced graphene oxide for high-performance Li-ion hybrid supercapacitors[J]. ACS Applied Materials & Interfaces, 2019, 11(16):14713-14721
[38] Geng L, Yan F, Dong C, et al. Design and regulation of novel MnFe2O4@C nanowires as high performance electrode for supercapacitor[J]. Nanomaterials, 2019, doi:10.3390/nano9050777
[39] Su L, Lei S, Liu L, et al. Sprinkling MnFe2O4 quantum dots on nitrogen-doped graphene sheets:The formation mechanism and application for high-performance supercapacitor electrodes[J]. Journal of Materials Chemistry, 2018, 6(21):9997-10007
[40] Khan R, Habib M, Gondal M A, et al. Facile synthesis of CuFe2O4-Fe2O3 composite for high-performance supercapacitor electrode applications[J]. Materials Research Express, 2017, doi:10.1088/2053-1591/aa8dc4
[41] He X, Li R, Liu J, et al. Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors[J]. Chemical Engineering Journal, 2018, 334:1573-1583
[42] Wang Z, Hong P, Peng S, et al. Co(OH)2@FeCo2O4 as electrode material for high performance faradaic supercapacitor application[J]. Electrochimica Acta, 2019, 299:312-319
[43] Chang Z, Li T, Li G, et al. One-Pot in situ synthesis of Ni(OH)2:NiFe2O4 nanosheet arrays on nickel foam as binder-free electrodes for supercapacitors[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(1):600-608
[44] Gopi C V M, Vinodh R, Sambasivam S, et al. Co9S8-Ni3S2 CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/graphene as binder-free cathode and anode materials for high energy density supercapacitors[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2019.122640
[45] Lin L, Tang S, Zhao S, et al. Hierarchical three-dimensional FeCo2O4@MnO2 core-shell nanosheet arrays on nickel foam for high-performance supercapacitor[J]. Electrochimica Acta, 2017, doi:10.1016/j.electacta.2017.01.022
[46] Zhu F, Liu Y, Yan M, et al. Construction of hierarchical FeCo2O4@MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor[J]. Journal of Colloid and Interface Science, 2018, 512:419-427
[47] Liu C, Peng T, Wang C, et al. Three-Dimensional ZnFe2O4@MnO2 hierarchical core/shell nanosheet arrays as high-performance battery-type electrode materials[J]. Journal of Alloys and Compounds, 2017, 720:86-94
[48] Mohd A M A A, Azman N H N, Kulandaivalu S, et al. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors[J]. Materials & Design, 2020, doi:10.1016/j.matdes.2019.108199
[49] Nagaraj R, Aruchamy K, Halanur M M, et al. Boosting the electrochemical performance of polyaniline based all-solid-state flexible supercapacitor using NiFe2O4 as adjuvant[J]. Journal of Electroanalytical Chemistry, 2019, doi:10.1016/j.jelechem.2019.113620
[50] Lin Y, Wang J, Liu A, et al. Deposition of polyaniline on porous ZnFe2O4 as electrode for enhanced performance supercapacitor[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(19):16369-16377
[51] Saleh G L, Arsalani N, Tabrizi A G, et al. Novel nanocomposite of MnFe2O4 and nitrogen-doped carbon from polyaniline carbonization as electrode material for symmetric ultra-stable supercapacitor[J]. Electrochimica Acta, 2018, 282:116-127
[52] He X, Zhao Y, Chen R, et al. Hierarchical FeCo2O4@polypyrrole core/shell nanowires on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):14945-14954
[53] Thu T V, van Nguyen T, Le X D, et al. Graphene-MnFe2O4-polypyrrole ternary hybrids with synergistic effect for supercapacitor electrode[J]. Electrochimica Acta, 2019, 314:151-160
[54] Song K, Wang X, Wang J, et al. Bifunctional conducting polymer coated CoFe2O4 core-shell nanolayer on carbon fiber cloth for 2.0 V wearable aqueous supercapacitors[J]. Chemistry Select, 2019, 4(5):1685-1695
[55] Vijaya S K, Kalai S R. Fabrication of flexible fiber supercapacitor using covalently grafted CoFe2O4/reduced graphene oxide/polyaniline and its electrochemical performances[J]. Electrochimica Acta, 2016, 213:469-481
[56] Li Y, Song C, Chen J, et al. Sulfur and nitrogen Co-doped activated CoFe2O4@C nanotubes as an efficient material for supercapacitor applications[J]. Carbon, 2020, 162:124-135
[57] Uke S J, Mardikar S P, Bambole D R, et al. Sol-Gel citrate synthesized Zn doped MgFe2O4 nanocrystals:A promising supercapacitor electrode material[EB/OL]. 2020
[58] Mohamed S G, Chen C, Chen C, et al. High-Performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes[J]. ACS Applied Materials & Interfaces, 2014, 6(24):22701-22708
[59] Zhang X, Zhang, Z, Sun S, et al. Hierarchical 3D NiFe2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors[J]. Dalton transactions, 2018, 47(7):2266-2273
[60] Javed M S, Zhang C, Chen L, et al. Hierarchical mesoporous NiFe2O4 nanocone forest directly growing on carbon textile for high performance flexible supercapacitors[J]. Journal of Materials Chemistry, 2016, 4(22):8851-8859
[61] Raut S S, Sankapal B R. First report on synthesis of ZnFe2O4 thin film using successive ionic layer adsorption and reaction:Approach towards solid-state symmetric supercapacitor device[J]. Electrochimica Acta, 2016, 198:203-211
[62] Cai W, Lai T, Dai W, et al. A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids[J]. Journal of Power Sources, 2014, 255:170-178
[63] Zhao P, Ye X, Zhu Y, et al. Three-Dimensional ordered macroporous NiFe2O4 coated carbon yarn for knittable fibriform supercapacitor[J]. Electrochimica Acta, 2018, 281:717-724
[64] Song K, Chen X, Yang R, et al. Novel hierarchical CoFe2Se4@CoFe2O4 and CoFe2S4@CoFe2O4 core-shell nanoboxes electrode for high-performance electrochemical energy storage[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2020.124175
[65] Song K, Wang X, Li J, et al. 3D hierarchical CoFe2O4/CoOOH nanowire arrays on Ni-sponge for high-performance flexible supercapacitors[J]. Electrochimica Acta, 2020, doi:10.1016/j.electacta.2020.135892
[66] Yue L, Zhang S, Zhao H, et al. One-Pot synthesis CoFe2O4/CNTS composite for asymmetric supercapacitor electrode[J]. Solid State Ionics, 2019, 329:15-24
[67] Gao H, Xiang J, Cao Y. Controlled synthesis of MnO2 nanosheets vertically covered FeCo2O4 nanoflakes as a binder-free electrode for a high-power and durable asymmetric supercapacitor[J]. Nanotechnology, 2017, doi:10.1088/1361-6528/aa6f89
[68] Vadiyar M M, Bandgar S B, Kolekar S S, et al. Holey C@ZnFe2O4 nanoflakes by carbon soot layer blasting approach for high performance supercapacitors[J]. ACS Applied Energy Materials, 2019, 2(9):6693-6704
[69] Palanivel B, Mudisoodum P S D, Maiyalagan T, et al. Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance[J]. Applied Surface Science, 2019, doi:10.1016/j.apsusc.2019.143807
[70] Zhao Y, Xu L, Yan J, et al. Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor[J]. Journal of Alloys and Compounds, 2017, 726:608-617
[71] Wang Q, Gao H, Qin X, et al. Fabrication of NiFe2O4@CoFe2O4 core-shell nanofibers for high-performance supercapacitors[J]. Materials Research Express, 2020, doi:10.1088/2053-1591/ab61ba
[72] Wu Q, Zhao Y, Yu J, et al. Controlled growth of hierarchical FeCo2O4 ultrathin nanosheets and Co3O4 nanowires on nickle foam for supercapacitors[J]. International Journal of Hydrogen Energy, 2019, 44(60):31780-31789
[73] Ojha D P, Karki H P, Song J H, et al. Decoration of g-C3N4 with hydrothermally synthesized FeWO4 nanorods as the high-performance supercapacitors[J]. Chemical Physics Letters, 2018, 712:83-88
[74] Zhao Y, Xu Y, Zeng J, et al. Low-Crystalline mesoporous CoFe2O4/C composite with oxygen vacancies for high energy density asymmetric supercapacitors[J]. RSC Advances, 2017, 7(87):55513-55522
[75] Sahoo S, Nguyen T T, Shim J J. Mesoporous Fe-Ni-Co ternary oxide nanoflake arrays on Ni foam for high-performance supercapacitor applications[J]. Journal of Industrial and Engineering Chemistry, 2018, 63:181-190
|