[1] RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52: 441-473 [2] 李艳梅, 郝国栋, 崔平, 等. 超级电容器电极材料研究进展[J]. 化学工业与工程, 2020, 37(1): 17-33 LI Yanmei, HAO Guodong, CUI Ping, et al. Research progress of electrode material for supercapacitor[J]. Chemical Industry and Engineering, 2020, 37(1): 17-33(in Chinese) [3] ZHANG L, ZHAO X. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531 [4] BROUSSE T, BÉLANGER D, LONG J. To be or not to be pseudocapacitive? [J]. Journal of the Electrochemical Society, 2015, 162(5): A5185-A5189 [5] GOGOTSI Y, PENNER R M. Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like? [J]. ACS Nano, 2018, 12(3): 2081-2083 [6] OYAMA S T, GOTT T, ZHAO H, et al. Transition metal phosphide hydroprocessing catalysts: A review[J]. Catalysis Today, 2009, 143(1/2): 94-107 [7] ZHOU K, ZHOU W, YANG L, et al. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach[J]. Advanced Functional Materials, 2015, 25(48): 7530-7538 [8] ZHANG X, SU D, WU A, et al. Porous NiCoP nanowalls as promising electrode with high-area and mass capacitance for supercapacitors[J]. Science China Materials, 2019, 62(8): 1115-1126 [9] 虞圣盼, 黄成德. 中空棒状MOF及其衍生的磷酸盐类电池型电容性能的研究[J]. 化学工业与工程, 2020, 37(5): 53-63 YU Shengpan, HUANG Chengde. Capacitor performance of hollow rod-shaped metal-organic framework and its derived metal phosphate[J]. Chemical Industry and Engineering, 2020, 37(5): 53-63(in Chinese) [10] LI Y, XU Y, YANG W, et al. MOF-derived metal oxide composites for advanced electrochemical energy storage[J]. Small, 2018, doi:10.1002/smll.201704435 [11] XING J, DU J, ZHANG X, et al. A Ni-P@NiCo LDH core-shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors[J]. Dalton Transactions (Cambridge, England: 2003), 2017, 46(30): 10064-10072 [12] LIU X, ZHANG L, GAO X, et al. Enlarged interlayer spacing in cobalt-manganese layered double hydroxide guiding transformation to layered structure for high supercapacitance[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23236-23243 [13] XIA H, LI G, CAI H, et al. Interlaced NiMn-LDH nanosheet decorated NiCo2O4 nanowire arrays on carbon cloth as advanced electrodes for high-performance flexible solid-state hybrid supercapacitors[J]. Dalton Transactions (Cambridge, England: 2003), 2019, 48(32): 12168-12176 [14] GAO X, ZHAO Y, DAI K, et al. NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2019.123373 [15] SUN W, DU Y, WU G, et al. Constructing metallic zinc-cobalt sulfide hierarchical core-shell nanosheet arrays derived from 2D metal-organic-frameworks for flexible asymmetric supercapacitors with ultrahigh specific capacitance and performance[J]. Journal of Materials Chemistry A, 2019, 7(12): 7138-7150 [16] XIAO X, ZOU L, PANG H, et al. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications[J]. Chemical Society Reviews, 2020, 49(1): 301-331 [17] WANG Y, SONG Y, XIA Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950 [18] GAO M, XU Y, JIANG J, et al. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices[J]. Chemical Society Reviews, 2013, doi:10.1039/c2cs35310e [19] LIU B, LIU B, WANG Q, et al. New energy storage option: Toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10011-10017 [20] WANG H, ZHU Y, ZONG Q, et al. Hierarchical NiCoP/Co (OH)2 nanoarrays for high-performance asymmetric hybrid supercapacitors[J]. Electrochimica Acta, 2019, doi:10.1039/C2CS35310E [21] ZONG Q, YANG H, WANG Q, et al. Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors[J]. Chemical Engineering Journal, 2019, 361: 1-11
|