[1] CHMIOLA J, YUSHIN G, GOGOTSI Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794):1760-1763
[2] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11):845-854
[3] TRAN C, KALRA V. Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors[J]. Journal of Power Sources, 2013, 235:289-296
[4] GANDLA D, WU X, ZHANG F, et al. High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels[J]. ACS Omega, 2021, 6(11):7615-7625
[5] CHANG P, YANG F, CEN Y, et al. Hierarchical nanoporous C/C composite from humic fulvic acid and sulfonated pitch for high-energy-density EDLC electrodes[J]. ChemNanoMat, 2021, 7(10):1131-1137
[6] 李艳梅,郝国栋,崔平,等.超级电容器电极材料研究进展[J].化学工业与工程, 2020, 37(1):17-33 LI Yanmei, HAO Guodong, CUI Ping, et al. Research progress of electrode material for supercapacitor[J]. Chemical Industry and Engineering, 2020, 37(1):17-33(in Chinese)
[7] 李超,那伟,张磊.铁基二元金属氧化物超级电容器电极的研究[J].化学工业与工程, 2021, 38(2):69-80 LI Chao, NA Wei, ZHANG Lei. Research progress on iron-based bimetal oxide as supercapacitor electrode[J]. Chemical Industry and Engineering, 2021, 38(2):69-80(in Chinese)
[8] BÉGUIN F, PRESSER V, BALDUCCI A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials (Deerfield Beach, Fla), 2014, 26(14):2219-2251, 2283
[9] LIU K, YANG T, ZHENG X, et al. Potassium-assisted carbonization of chlorobenzene in Ar/H2 to prepare porous carbon with low oxygen content for high withstanding voltage EDLCs[J]. Carbon, 2021, 172:154-161
[10] CHANG P, WANG C, KINUMOTO T, et al. Frame-filling C/C composite for high-performance EDLCs with high withstanding voltage[J]. Carbon, 2018, 131:184-192
[11] ISHIMOTO S, ASAKAWA Y, SHINYA M, et al. Degradation responses of activated-carbon-based EDLCs for higher voltage operation and their factors[J]. Journal of The Electrochemical Society, 2009, 156(7):A563-A567
[12] IZADI-NAJAFABADI A, YASUDA S, KOBASHI K, et al. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density[J]. Advanced Materials (Deerfield Beach, Fla), 2010, 22(35):E235-E241
[13] NAOI K, ISHIMOTO S, MIYAMOTO J I, et al. Second generation'nanohybrid supercapacitor':Evolution of capacitive energy storage devices[J]. Energy&Environmental Science, 2012, 5(11):9363-9373
[14] SHAFEEYAN M S, DAUD W M A W, HOUSHMAND A, et al. A review on surface modification of activated carbon for carbon dioxide adsorption[J]. Journal of Analytical and Applied Pyrolysis, 2010, 89(2):143-151
[15] PEI S, ZHAO J, DU J, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon, 2010, 48(15):4466-4474
[16] PHAM V H, PHAM H D, DANG T, et al. Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen[J]. Journal of Materials Chemistry, 2012, 22(21):10530-10536
[17] LAVIN-LOPEZ M P, PATON-CARRERO A, SANCHEZ-SILVA L, et al. Influence of the reduction strategy in the synthesis of reduced graphene oxide[J]. Advanced Powder Technology, 2017, 28(12):3195-3203
[18] QIN T, SHI Z, LI M, et al. Effect of reduction heat treatment in H2 atmosphere on structure and electrochemical properties of activated carbon[J]. Journal of Solid State Electrochemistry, 2015, 19(5):1437-1446
[19] BAUMGARTEN E, MASCHKE L. Hydrogen spillover through the gas phase[J]. Applied Catalysis A:General, 2000, 202(2):171-177
[20] BADUN G A, JOHNSON B F G, SHCHEPINA N E. Long distance hydrogen spillover found by a radioactive assay for the Ru5Pt/MCM-41 catalytic system[J]. Mendeleev Communications, 2009, 19(4):235-236
[21] PSOFOGIANNAKIS G M, FROUDAKIS G E. DFT study of hydrogen storage by spillover on graphite with oxygen surface groups[J]. Journal of the American Chemical Society, 2009, 131(42):15133-15135
[22] PSOFOGIANNAKIS G M, FROUDAKIS G E. Fundamental studies and perceptions on the spillover mechanism for hydrogen storage[J]. Chemical Communications, 2011, 47(28):7933-7943
[23] RAZZHIVINA I A, BADUN G A, CHERNYSHEVA M G, et al. Hydrogen spillover through a gas phase[J]. Mendeleev Communications, 2016, 26(1):59-60
[24] NISHIHARA H, SIMURA T, KYOTANI T. Enhanced hydrogen spillover to fullerene at ambient temperature[J]. Chemical Communications, 2018, 54(27):3327-3330
[25] LIU K, JIAO M, CHANG P, et al. Pitch-based porous aerogel composed of carbon onion nanospheres for electric double layer capacitors[J]. Carbon, 2018, 137:304-312
[26] MARTA S, PATRICIA V, ANTONIO F. N-doped polypyrrole-based porous carbons for CO2 capture[J]. Advanced Functional Materials, 2011, 21:2781-2787
[27] LOZANO-CASTELLÓ D, LILLO-RÓDENAS M A, CAZORLA-AMORÓS D, et al. Preparation of activated carbons from Spanish anthracite[J]. Carbon, 2001, 39(5):741-749
[28] YUAN S, HUANG X, WANG H, et al. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance[J]. Journal of Energy Chemistry, 2020, 51:396-404
[29] PHAM V H, DANG T, SINGH K, et al. A catalytic and efficient route for reduction of graphene oxide by hydrogen spillover[J]. Journal of Materials Chemistry A, 2013, 1(4):1070-1077
[30] ZHOU C, SZPUNAR J A, CUI X. Synthesis of Ni/graphene nanocomposite for hydrogen storage[J]. ACS Applied Materials&Interfaces, 2016, 8(24):15232-15241
|