[1] TIETZE L F, SOMMER K M, ZINNGREBE J, et al. Palladium-catalyzed enantioselective domino reaction for the efficient synthesis of vitamin E[J]. Angewandte Chemie International Edition, 2005, 44(2): 257-259
[2] NETSCHER T, MALAISÉ G, BONRATH W, et al. A new route to vitamin E key-intermediates by olefin cross-metathesis[J]. Catalysis Today, 2007, 121(1/2): 71-75
[3] HERNÁNDEZ-TORRES G, URBANO A, CARREÑO M C, et al. Stereocontrolled generation of the (2R) chroman core of vitamin E: Total synthesis of (2R, 4'RS, 8'RS)-α-tocopherol[J]. Organic Letters, 2009, 11(21): 4930-4933
[4] WANG Yiyong, ZHANG Chengliang, XU Xinde. Research progress of purification technology of natural vitamin E[J]. China Food Additives, 2014(2): 203-207(in Chinese) 王义永, 章城亮, 许新德. 天然维生素E提纯技术进展[J]. 中国食品添加剂, 2014(2): 203-207
[5] ZHOU Jian, TANG Hongbo. Determination of vitamin E in soybean residue with GC-MS by using internal standard method[J]. Applied Chemical Industry, 2010, 39(12): 1934-1935(in Chinese) 周健, 汤洪波. GC-MS内标法测定大豆渣油中维生素E的含量[J]. 应用化工, 2010, 39(12): 1934-1935
[6] WU Ying, CHEN Hong. A GC analysis of different components in synthesizing 2, 3, 5-trimethyl hydroquinone[J]. Huaxue Shijie (Chemical World), 2002, 43(9): 466-468(in Chinese) 吴缨, 陈红. 三甲氢醌合成中各组分的气相色谱分析[J]. 化学世界, 2002, 43(9): 466-468
[7] YAMAGUCHI S, SHINODA H, INOUE M, et al. ChemInform abstract: Mechanistic studies on the oxidation of naphthalenes and methylbenzenes to quinones with H2O2 in the presence of Pd(Ⅱ) catalysts[J]. ChemInform, 1986, 34(11): 4467-4473
[8] SUN H J, HARMS K, SUNDERMEYER J. Aerobic oxidation of 2, 3, 6-trimethylphenol to trimethyl-1, 4-benzoquinone with copper(Ⅱ) chloride as catalyst in ionic liquid and structure of the active species[J]. Journal of the American Chemical Society, 2004, 126(31): 9550-9551
[9] SUN H, LI X, SUNDERMEYER J. Aerobic oxidation of phenol to quinone with copper chloride as catalyst in ionic liquid[J]. Journal of Molecular Catalysis A: Chemical, 2005, 240(1/2): 119-122
[10] LIU Dongming, LI Xun, ZANG Hengchang. Research advance in the synthesis of vitamin E nucleus[J]. University Chemistry, 2015, 30(3): 26-33(in Chinese) 柳东明, 李荀, 臧恒昌. 维生素E母核合成研究进展[J]. 大学化学, 2015, 30(3): 26-33
[11] ZHOU J, HUA Z, CUI X, et al. Hierarchical mesoporous TS-1 zeolite: A highly active and extraordinarily stable catalyst for the selective oxidation of 2, 3, 6-trimethylphenol[J]. Chemical Communications, 2010, 46(27): 4994-4996
[12] SHIMIZU M, WATANABE Y, ORITA H, et al. Synthesis of alkyl substitutedp-benzoquinones from the corresponding phenols using molecular oxygen catalyzed by copper(Ⅱ) chloride-amine hydrochloride systems[J]. Bulletin of the Chemical Society of Japan, 1992, 65(6): 1522-1526
[13] WANG C, GUAN W, XIE P, et al. Effects of ionic liquids on the oxidation of 2, 3, 6-trimethylphenol to trimethyl-1, 4-benzoquinone under atmospheric oxygen[J]. Catalysis Communications, 2009, 10(5): 725-727
[14] ZHANG W, HU L, ZHANG H, et al. Stable non-covalent Co(salphen)-based polymeric catalyst for highly efficient and selective oxidation of 2, 3, 6-trimethylphenol[J]. Polymers, 2020, 12(5): 1076-1086
[15] CHANG S, AN H, CHEN Y, et al. Multiunit catalysts with synergistic reactivity: Three-dimensional polyoxometalate-based coordination polymers for highly efficient synthesis of functionalized p-benzoquinones[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37908-37919
[16] ZHANG Tianyong, WANG Mengying, LI Bin, et al. Research progress on the catalytic oxidation of 2, 3, 6-trimethylphenol to 2, 3, 5-trimethybenzoquinone[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 513-518(in Chinese) 张天永, 王梦颖, 李彬, 等. 三甲基苯酚催化合成三甲基苯醌研究进展[J]. 化工进展, 2016, 35(2): 513-518
[17] SONG Binbin, LIU Haitao. Market and technological advance on comprehensive utilization of C9 heavy aromatics[J]. Chemical Industry, 2016, 34(3): 36-39(in Chinese) 宋彬彬, 刘海涛. 重整C9芳烃制取偏三甲苯、均三甲苯的技术与产品市场[J]. 化学工业, 2016, 34(3): 36-39
[18] LI Jiansheng, ZHANG Shuyun. New process for the electrolytic synthesis of 2, 3, 5-trimethylbenzoquinone[J]. Chemical Engineer, 1994, 8(2): 22-23(in Chinese) 李建生, 张淑云. 2, 3, 5-三甲基苯醌电解合成新工艺[J]. 化学工程师, 1994, 8(2): 22-23
[19] BAI Yuansheng, LI Zicheng, WANG Lixin, et al. Research progress on the synthesis of 2, 3, 5-trimethylhydroquinone[J]. Chinese Journal of Synthetic Chemistry, 2014, 22(3): 423-428(in Chinese) 白元盛, 李子成, 王立新, 等. 2, 3, 5-三甲基氢醌的合成研究进展[J]. 合成化学, 2014, 22(3): 423-428
[20] YANG Junjuan, LI Xiying, LIU Yong, et al. Research progress for manufacturing 2, 3, 5-trimethylhydroquinone[J]. Chemical Research, 2011, 22(4): 94-99(in Chinese) 杨俊娟, 李西营, 刘勇, 等. 2, 3, 5-三甲基氢醌制备工艺研究进展[J]. 化学研究, 2011, 22(4): 94-99
[21] ZHANG Pengpeng, MENG Sihan, ZHAO Yu, et al. Homogenous hydroxylation of benzene to phenol under iron acetate micelles catalysis[J]. Shandong Chemical Industry, 2020, 49(3): 3-6(in Chinese) 张鹏鹏, 孟思寒, 赵宇, 等. 铁盐胶束均相催化苯羟基化制备苯酚的反应[J]. 山东化工, 2020, 49(3): 3-6
[22] ZHANG T, NIE X, YU W, et al. Single atomic Cu-N2 catalytic sites for highly active and selective hydroxylation of benzene to phenol[J]. iScience, 2019, 22: 97-108
[23] ZHAO Q, ZHANG L, ZHAO M, et al. Vanadium oxyacetylacetonate grated on metal organic framework as catalyst for the direct hydroxylation of benzene to phenol[J]. ChemistrySelect, 2020, 5(22): 6818-6822
[24] KURIKAWA Y, TOGO M, MURATA M, et al. Mechanistic insights into visible light-induced direct hydroxylation of benzene to phenol with air and water over Pt-modified WO3 photocatalyst[J]. Catalysts, 2020, 10(5): 557-568
[25] SHAHID A, LOPEZ-OROZCO S, MARTHALA V R, et al. Direct oxidation of benzene to phenol over hierarchical ZSM-5 zeolites prepared by sequential post synthesis modification[J]. Microporous and Mesoporous Materials, 2017, 237: 151-159
[26] ZHAO X, ZHANG T, ZHOU Y, et al. Preparation of peracetic acid from hydrogen peroxide: Part Ⅰ: Kinetics for peracetic acid synthesis and hydrolysis[J]. Journal of Molecular Catalysis A: Chemical, 2007, 271(1/2): 246-252
[27] ZHAO X, CHENG K, HAO J, et al. Preparation of peracetic acid from hydrogen peroxide, part Ⅱ: Kinetics for spontaneous decomposition of peracetic acid in the liquid phase[J]. Journal of Molecular Catalysis A: Chemical, 2008, 284(1/2): 58-68
[28] SUN X, ZHAO X, DU W, et al. Kinetics of formic acid-autocatalyzed preparation of performic acid in aqueous phase[J]. Chinese Journal of Chemical Engineering, 2011, 19(6): 964-971
[29] DE FILIPPIS P, SCARSELLA M, VERDONE N. Peroxyformic acid formation: A kinetic study[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1372-1375
[30] MORO-OKA Y, AKITA M. Bio-inorganic approach to hydrocarbon oxidation[J]. Catalysis Today, 1998, 41(4): 327-338
[31] ORITA H, SHIMIZU M, HAYAKAWA T, et al. Oxidation of methoxy-and/or methyl-substituted benzenes and naphthalenes to quinones and phenols by H2O2 in HCOOH[J]. Bulletin of the Chemical Society of Japan, 1989, 62(5): 1652-1657
[32] ASAKAWA Y, MATSUDA R, TORI M, et al. Efficient preparation of some biologically active substances from natural and nonnatural aromatic compounds by m-chloroperbenzoic acid oxidation[J]. The Journal of Organic Chemistry, 1988, 53(23): 5453-5457
[33] ZHANG X, HAO Z, YANG C, et al. Preparation of vitamin E intermediate from an inexpensive substrate by selective oxidation of pseudocumene in HCOOH-H2O2 system[J]. Transactions of Tianjin University, 2018, 24(3): 263-271
[34] CHEN Hong, WU Ying, XU Guomei. Synthesis of 2, 3, 5-trimethylhydroquinone by direct oxidation using hydrogen peroxide[J]. Advances in Fine Fetrochemicals, 2002, 3(4): 25-27(in Chinese) 陈红, 吴缨, 徐国梅. 过氧化氢直接氧化法合成2, 3, 5-三甲基氢醌[J]. 精细石油化工进展, 2002, 3(4): 25-27
[35] ZHANG Weidong, MA Xinqi, AN Limin. Process for green synthesis of 2, 3, 5-trimethylhydroquinone[J]. Chemical Research, 2012, 23(2): 31-34(in Chinese) 张卫东, 马新起, 安利敏. 2, 3, 5-三甲基氢醌的绿色合成工艺研究[J]. 化学研究, 2012, 23(2): 31-34
[36] ZHANG Tianyong, LIU Xiaosi, LI Bin, et al. Effect of coupling agent modification on the catalytic performance of γ-Al2O3 for pseudocumene oxidation[J]. Chemistry, 2017, 80(6): 573-578(in Chinese) 张天永, 刘晓思, 李彬, 等. 偶联剂改性对γ-Al2O3催化氧化偏三甲苯性能的影响[J]. 化学通报, 2017, 80(6): 573-578
[37] BOHLE A, SCHUBERT A, SUN Y, et al. A new metal-free access to vitamin K3[J]. Advanced Synthesis & Catalysis, 2006, 348(9): 1011-1015
[38] YANG Chaoqun. Preparation of 2, 3, 5-trimethylquinone from one-step oxidation of 1, 2, 4-trimethylbenzene[D]. Tianjin: Tianjin University, 2017 (in Chinese) 杨超群. 偏三甲苯一步氧化制备2, 3, 5-三甲基苯醌的研究[D]. 天津: 天津大学, 2017
[39] GÓMEZ L, GARCIA-BOSCH I, COMPANY A, et al. Stereospecific C-H oxidation with H2O2 catalyzed by a chemically robust site-isolated iron catalyst[J]. Angewandte Chemie (International Ed in English), 2009, 48(31): 5720-5723
[40] CHEN M, WHITE M C. Combined effects on selectivity in Fe-catalyzed methylene oxidation[J]. Science, 2010, 327(5965): 566-571
[41] HENSEN E J M, ZHU Q, JANSSEN R A J, et al. Selective oxidation of benzene to phenol with nitrous oxide over MFI zeolites: 1. On the role of iron and aluminum[J]. Journal of Catalysis, 2005, 233(1): 123-135
[42] CHOI J S, KIM T H, CHOO K Y, et al. Direct synthesis of phenol from benzene on iron-impregnated activated carbon catalysts[J]. Applied Catalysis A: General, 2005, 290(1/2): 1-8
[43] ANILKUMAR G, BITTERLICH B, GELALCHA F G, et al. An efficient biomimetic Fe-catalyzed epoxidation of olefins using hydrogen peroxide[J]. Chemical Communications (Cambridge, England), 2007, (3): 289-291
[44] BITTERLICH B, ANILKUMAR G, GELALCHA F G, et al. Development of a general and efficient iron-catalyzed epoxidation with hydrogen peroxide as oxidant[J]. Chemistry-an Asian Journal, 2007, 2(4): 521-529
[45] SCHRÖDER K, TONG X F, BITTERLICH B, et al. Novel biomimetic iron-catalysts for environmentally benign epoxidations of olefins[J]. Tetrahedron Letters, 2007, 48(36): 6339-6342
[46] GELALCHA F, BITTERLICH B, ANILKUMAR G, et al. Iron-catalyzed asymmetric epoxidation of aromatic alkenes using hydrogen peroxide[J]. Angewandte Chemie International Edition, 2007, 46(38): 7293-7296
[47] BITTERLICH B, SCHRÖDER K, TSE M K, et al. An improved iron-catalyzed epoxidation of aromatic and aliphatic olefins with hydrogen peroxide as oxidant[J]. European Journal of Organic Chemistry, 2008, 2008(29): 4867-4870
[48] LIU Chunyan, LIU Lin, QIAN Jianhua. A novel synthesis method of 2, 3, 5-trimethylhydroquinone[J]. Liaoning Chemical Industry, 2006, 35(5): 249-250, 290 (in Chinese) 刘春艳, 刘琳, 钱建华. 2, 3, 5-三甲基氢醌合成新方法[J]. 辽宁化工, 2006, 35(5): 249-250, 290
[49] MÖLLER K, WIENHÖFER G, WESTERHAUS F, et al. Oxidation of 1, 2, 4-trimethylbenzene (TMB), 2, 3, 6-trimethylphenol (TMP) and 2-methylnaphthalene to 2, 3, 5-trimethylbenzoquinone (TMBQ) and menadione (vitamin K3)[J]. Catalysis Today, 2011, 173(1): 68-75
[50] BAO Ji, LIU Gaofu, GAO Rong, et al. Study on the synthesis of 2, 3, 5-trimethylbenzoquinone[J]. Chemical Enterprise Management, 2016, (4): 187-187 (in Chinese) 包吉, 刘高赋, 高荣, 等. 2, 3, 5-三甲基苯醌的合成研究[J]. 化工管理, 2016, (4): 187-187
[51] ZHAO Feng, YANG Beiyu, GU Jianjiang, et al. Performance of Cu-MCM-41 catalyst for catalytic oxidation of 1, 2, 4-trimethylbenzene[J]. Industrial Catalysis, 2012, 20(6): 62-66(in Chinese) 赵峰, 杨蓓玉, 顾剑江, 等. Cu-MCM-41催化剂对偏三甲苯的催化氧化性能[J]. 工业催化, 2012, 20(6): 62-66
[52] NOREÑA-FRANCO L, HERNANDEZ-PEREZ I, AGUILAR-PLIEGO J, et al. Selective hydroxylation of phenol employing Cu-MCM-41 catalysts[J]. Catalysis Today, 2002, 75(1/2/3/4): 189-195
[53] JIANG Siyang, KONG Yan, WU Cheng, et al. Catalytic performance of Cu-MCM-41 with high copper content for the direct hydroxylation of benzene to phenol[J]. Chinese Journal of Catalysis, 2006, 27(5): 421-426(in Chinese) 蒋斯扬, 孔岩, 吴丞, 等. 高Cu含量MCM-41在苯直接羟基化反应中的催化性能[J]. 催化学报, 2006, 27(5): 421-426
[54] SUN Jianmin, MENG Xiangju, WANG Runwei, et al. Preparation, characterization of Cu-MCM-41 and its catalysis for hydroxylation of aromatic compounds[J]. Chemical Research in Chinese Universities, 2000, 21(9): 1451-1454(in Chinese) 孙建敏, 孟祥举, 王润伟, 等. Cu修饰的MCM-41的合成、表征及对芳烃羟化反应催化作用的研究[J]. 高等学校化学学报, 2000, 21(9): 1451-1454
[55] XIE Lin, LIN Furong, LI Wei, et al. Functionalized ionic liquid catalytic oxidation of pseudocumene to 2, 3, 5-trimethyl-benzoquinone[J]. China Building Materials Science & Technology, 2017, 26(5): 33-35(in Chinese) 颉林, 林富荣, 李薇, 等. 功能化离子液体催化氧化偏三甲苯合成2, 3, 5-三甲基苯醌[J]. 中国建材科技, 2017, 26(5): 33-35
[56] VAN VLIET M C A, MANDELLI D, ARENDS I W C E, et al. Alumina: A cheap, active and selective catalyst for epoxidations with (aqueous) hydrogen peroxide[J]. Green Chemistry, 2001, 3(5): 243-246
[57] SEPULVEDA J, TEIXEIRA S, SCHUCHARDT U. Alumina-catalyzed epoxidation of unsaturated fatty esters with hydrogen peroxide[J]. Applied Catalysis A: General, 2007, 318: 213-217
[58] CESQUINI R, DE SE SILVA J, WOITISKI C, et al. Alumina-catalyzed epoxidation with hydrogen peroxide: Recycling experiments and activity of Sol-gel alumina[J]. Advanced Synthesis & Catalysis, 2002, 344(8): 911-914
[59] SHEN Bin, LUO Min, ZHAO Lina, et al. First-principles calculation of SO2 and NO2 adsorbed on γ-Al2O3(110) surface[J]. Journal of Atomic and Molecular Physics, 2021, 38(1): 15-21(in Chinese) 沈彬, 罗敏, 赵丽娜, 等. SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理计算[J]. 原子与分子物理学报, 2021, 38(1): 15-21
[60] LI Suidang, FU Jiquan. Novel synthesis technology of trimethylbenzoquinone by catalytic oxidation of pseudocumene[J]. Petrochemical Technology & Application, 2008, 26(3): 234-236(in Chinese) 李岁党, 傅吉全. 催化氧化偏三甲苯合成三甲基苯醌[J]. 石化技术与应用, 2008, 26(3): 234-236
[61] ZHANG Tianyong, DUAN Yongjie, LI Bin, et al. Synthesis of 2, 3, 5-trimethylbenzoquinone by catalytic oxidation of pseudocumene[J]. Chemical Reagents, 2013, 35(1): 3-6(in Chinese) 张天永, 段永洁, 李彬, 等. 偏三甲苯催化氧化法制备2, 3, 5-三甲基苯醌的研究[J]. 化学试剂, 2013, 35(1): 3-6
[62] ZHANG Tianyong, WANG Mengying, LI Bin, et al. Industrial packing γ-Al2O3 catalyzed oxidation of 1, 2, 4-trimethylbenzene to 2, 3, 5-trimethybenzoquinone[J]. Chinese Journal of Applied Chemistry, 2016, 33(10): 1161-1167(in Chinese) 张天永, 王梦颖, 李彬, 等. 工业填料γ-Al2O3催化氧化偏三甲苯制2, 3, 5-三甲基苯醌[J]. 应用化学, 2016, 33(10): 1161-1167
[63] ADAM W, HERRMANN W A, LIN J, et al. Catalytic oxidation of phenols to p-quinones with the hydrogen peroxide and methyltrioxorhenium(Ⅶ) system[J]. The Journal of Organic Chemistry, 1994, 59(26): 8281-8283
[64] ADAM W, HERRMANN W A, SAHA-MÖLLER C R, et al. Oxidation of methoxybenzenes to p-benzoquinones catalyzed by methyltrioxorhenium(Ⅶ)[J]. Journal of Molecular Catalysis A: Chemical, 1995, 97(1): 15-20
[65] KVHN F E, SCHERBAUM A, HERRMANN W A. Methyltrioxorhenium and its applications in olefin oxidation, metathesis and aldehyde olefination[J]. Journal of Organometallic Chemistry, 2004, 689(24): 4149-4164
[66] KVHN F E, SANTOS A M, HERRMANN W A. Organorhenium(Ⅶ) and organomolybdenum(Ⅵ) oxides: Syntheses and application in olefin epoxidation[J]. Dalton Transactions, 2005, (15): 2483-2491
[67] ROMÃO C C, KVHN F E, HERRMANN W A. Rhenium(Ⅶ) oxo and imido complexes: Synthesis, structures, and applications[J]. Chemical Reviews, 1997, 97(8): 3197-3246
[68] HANSEN P J, ESPENSON J H. Oxidation of chloride ions by hydrogen peroxide, catalyzed by methylrhenium trioxide[J]. Inorganic Chemistry, 1995, 34(23): 5839-5844
[69] HERRMANN W A, KVHN F E. Organorhenium oxides[J]. Accounts of Chemical Research, 1997, 30(4): 169-180
[70] MÓNICA C, ALTMANN P, BONRATH W, et al. Methyltrioxorhenium-catalysed oxidation of pseudocumene in the presence of amphiphiles for the synthesis of vitamin E[J]. Catalysis Science & Technology, 2012, 2(4): 722-724
[71] JACOB J, ESPENSON J H. Selective C-H bond activation of arenes catalyzed by methylrhenium trioxide[J]. Inorganica Chimica Acta, 1998, 270(1/2): 55-59
[72] CARRIL M, ALTMANN P, DREES M, et al. Methyltrioxorhenium-catalyzed oxidation of pseudocumene for vitamin E synthesis: A study of solvent and ligand effects[J]. Journal of Catalysis, 2011, 283(1): 55-67
[73] XU Z, ZHOU M, DREES M, et al. Mono- and bis- methyltrioxorhenium(Ⅶ) complexes with salen ligands: Synthesis, properties, applications[J]. Inorganic Chemistry, 2009, 48(14): 6812-6822
[74] ZHOU M, YU Y, CAPAPÉ A, et al. (N-salicylidene)aniline derived Schiff base complexes of methyltrioxorhenium(Ⅶ): Ligand influence and catalytic performance[J]. Chemistry-an Asian Journal, 2009, 4(3): 411-418
[75] KUDRIK E, SOROKIN A. N-bridged diiron phthalocyanine catalyzes oxidation of benzene with H2O2 via benzene oxide with NIH shift evidenced by using 1, 3, 5-[D3]benzene as a probe[J]. Chemistry-A European Journal, 2008, 14(24): 7123-7126
[76] NAKAGAWA Y, MIZUNO N. Mechanism of[γ-H2SiV2W10O40](4-)-catalyzed epoxidation of alkenes with hydrogen peroxide[J]. Inorganic Chemistry, 2007, 46(5): 1727-1736
[77] KAMATA K, YONEHARA K, NAKAGAWA Y, et al. Efficient stereo- and regioselective hydroxylation of alkanes catalysed by a bulky polyoxometalate[J]. Nature Chemistry, 2010, 2(6): 478-483
[78] FLOREA M, MARIN R S, PǎLǎANU F M, et al. Mesostructured vanadia-alumina catalysts for the synthesis of vitamin K3[J]. Catalysis Today, 2015, 254: 29-35
[79] PETROV L A, LOBANOVA N P, VOLKOV V L, et al. Catalytic properties of polyvanadomolybdic acids in oxidation of 1, 2, 4-trimethylbenzene by peracetic acid[J]. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 1989, 38(9): 1806-1809
[80] ZALOMAEVA O V, EVTUSHOK V Y, MAKSIMOV G M, et al. Selective oxidation of pseudocumene and 2-methylnaphthalene with aqueous hydrogen peroxide catalyzed by γ-Keggin divanadium-substituted polyoxotungstate[J]. Journal of Organometallic Chemistry, 2015, 793: 210-216
|