[1] Farah S, Anderson D G, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications:A comprehensive review[J]. Advanced Drug Delivery Reviews, 2016, 107:367-392
[2] Slomkowski S, Penczek S, Duda A. Polylactides:An overview[J]. Polymers for Advanced Technologies, 2014, 25(5):436-447
[3] Maglio G, Malinconico M, Migliozzi A, et al. Immiscible poly(L-lactide)/poly(ε-caprolactone) blends:Influence of the addition of a poly(L-lactide)-poly(oxyethylene) block copolymer on thermal behavior and morphology[J]. Macromolecular Chemistry and Physics, 2004, 205(7):946-950
[4] Pepels M P F, Hofman W P, Kleijnen R, et al. Block copolymers of "PE-Like" poly(pentadecalactone) and poly(L-lactide):Synthesis, properties, and compatibilization of polyethylene/poly(L-lactide) blends[J]. Macromolecules, 2015, 48(19):6909-6921
[5] Li Y, Shimizu H. Improvement in toughness of poly(L-lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene copolymer (ABS):Morphology and properties[J]. European Polymer Journal, 2009, 45(3):738-746
[6] Zhang K, Nagarajan V, Misra M, et al. Supertoughened renewable PLA reactive multiphase blends system:Phase morphology and performance[J]. ACS Applied Materials & Interfaces, 2014, 6(15):12436-12448
[7] Wang R, Wang S, Zhang Y, et al. Toughening modification of PLLA/PBS blends via in situ compatibilization[J]. Polymer Engineering and Science, 2009, 49(1):26-33
[8] Stoclet G, Seguela R, Lefebvre J M. Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers:Polylactide/polyamide11[J]. Polymer, 2011, 52(6):1417-1425
[9] Zhang K, Mohanty A K, Misra M. Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties[J]. ACS Applied Materials & Interfaces, 2012, 4(6):3091-3101
[10] Hu K, Huang D, Jiang H, et al. Toughening biosourced poly(lactic acid) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends by a renewable poly(epichlorohydrin-co-ethylene oxide) elastomer[J]. ACS Omega, 2019, 4(22):19777-19786
[11] 胡宽, 江海, 黄冬, 等. 聚丁二酸丁二醇酯与氯醚弹性体协同增韧改性聚乳酸多元共混体系[J]. 应用化学, 2019, 36(9):996-1002 Hu Kuan, Jiang Hai, Huang Dong, et al. Synergetic modification of polybutylene succinate and poly(epichlorohydrin-co-ethylene oxide) elastomer in toughening poly(lactic acid)[J]. Chinese Journal of Applied Chemistry, 2019, 36(9):996-1002(in Chinese)
[12] Gordon M, Taylor J S. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers[J]. Journal of Applied Chemistry, 2007, 2(9):493-500
[13] Zhang K, Ran X, Wang X, et al. Improvement in toughness and crystallization of poly(L-lactic acid) by melt blending with poly(epichlorohydrin-co-ethylene oxide)[J]. Polymer Engineering and Science, 2011, 51(12):2370-2380
|