[1] Hoegh-Guldberg O, Jacob D, Taylor M, et al. The human imperative of stabilizing global climate change at 1.5℃[J]. Science, 2019, doi:10.1126/science.aaw6974
[2] Xu Y, Ramanathan V, Victor D G. Global warming will happen faster than we think[J]. Nature, 2018, 564(7734):30-32
[3] Adams S, Nsiah C. Reducing carbon dioxide emissions; Does renewable energy matter?[J]. Science of the Total Environment, 2019, doi:10.1016/j.scitotenv.2019.07.094
[4] Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide[J]. Energy Environ Sci, 2010, 3(1):43-81
[5] Bajracharya S, Aryal N, de Wever H, et al. Bioelectrochemical syntheses[M]//An Economy Based on Carbon Dioxide and Water. Cham:Springer International Publishing, 2019
[6] Song R, Zhu W, Fu J, et al. Electrode materials engineering in electrocatalytic CO2 reduction:Energy input and conversion efficiency[J]. Advanced Materials, 2020, doi:10.1002/adma.201903796
[7] Chen Z, Wang X, Liu L. Electrochemical reduction of carbon dioxide to value-added products:The electrocatalyst and microbial electrosynthesis[J]. The Chemical Record, 2019, 19(7):1272-1282
[8] Qiao J, Liu Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2):631-675
[9] Jiang X, Nie X, Guo X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15):7984-8034
[10] Gao D, Arán-Ais R M, Jeon H S, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products[J]. Nature Catalysis, 2019, 2(3):198-210
[11] Rosen B A, Hod I. Tunable molecular-scale materials for catalyzing the low-overpotential electrochemical conversion of CO2[J]. Advanced Materials, 2018, 30(41):1706238.1-1706238.7
[12] Lu Q, Rosen J, Zhou Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction[J]. Nature Communications, 2014, doi:10.1038/ncomms4242
[13] Del Castillo A, Alvarez-Guerra M, Solla-Gullón J, et al. Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes:Effect of metal loading and particle size[J]. Applied Energy, 2015, 157:165-173
[14] Zhang B, Zhang J, Hua M, et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets[J]. Journal of the American Chemical Society, 2020, 142(31):13606-13613
[15] Zhou Y, Zhou R, Zhu X, et al. Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate[J]. Advanced Materials, 2020, doi:10.1002/adma.202000992
[16] Ma X, Shen Y, Yao S, et al. Core-shell nanoporous AuCu3@Au monolithic electrode for efficient electrochemical CO2 reduction[J]. Journal of Materials Chemistry A, 2020, 8(6):3344-3350
[17] Lamaison S, Wakerley D, Blanchard J, et al. High-current-density CO2-to-CO electroreduction on Ag-alloyed Zn dendrites at elevated pressure[J]. Joule, 2020, 4(2):395-406
[18] Wang H, Tzeng Y K, Ji Y, et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface[J]. Nature Nanotechnology, 2020, 15(2):131-137
[19] Yin Z, Yu C, Zhao Z, et al. Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene[J]. Nano Letters, 2019, 19(12):8658-8663
[20] Zhang W, Huang C, Xiao Q, et al. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2020, 142(26):11417-11427
[21] Matheu R, Gutierrez-Puebla E, Monge M Á, et al. Three-dimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction[J]. Journal of the American Chemical Society, 2019, 141(43):17081-17085
[22] Kang P, Zhang S, Meyer T J, et al. Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes[J]. Angewandte Chemie International Edition, 2014, 53(33):8709-8713
[23] Kauffman D R, Alfonso D, Matranga C, et al. Experimental and computational investigation of Au25 clusters and CO2:A unique interaction and enhanced electrocatalytic activity[J]. Journal of the American Chemical Society, 2012, 134(24):10237-10243
[24] Wang W, Shang L, Chang G, et al. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide[J]. Advanced Materials, 2019, 31(19):1808276.1-1808276.7
[25] Talapaneni S N, Singh G, Kim I Y, et al. Nanostructured carbon nitrides for CO2 capture and conversion[J]. Advanced Materials, 2020, doi:10.1002/adma.201904635
[26] Chakraborty P, Ma T F, Zahiri A H, et al. Carbon-based materials for thermoelectrics[J]. Advances in Condensed Matter Physics, 2018, 2018:1-29
[27] Wu J, Yadav R M, Liu M, et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes[J]. ACS Nano, 2015, 9(5):5364-5371
[28] Ye L, Ying Y, Sun D, et al. Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO2 reduction[J]. Angewandte Chemie International Edition, 2020, 59(8):3244-3251
[29] Wu J, Ma S, Sun J, et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates[J]. Nature Communications, 2016, doi:10.1638/ncomms 13869
[30] Mou S, Wu T, Xie J, et al. Boron phosphide nanoparticles:A nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH[J]. Advanced Materials, 2019, doi:10.1002/adma.201903499
[31] Yuan X, Zhang L, Li L, et al. Ultrathin Pd-Au shells with controllable alloying degree on Pd nanocubes toward carbon dioxide reduction[J]. Journal of the American Chemical Society, 2019, 141(12):4791-4794
[32] Ma S, Sadakiyo M, Heima M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns[J]. Journal of the American Chemical Society, 2017, 139(1):47-50
[33] Zhang W, Hu Y, Ma L, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals[J]. Advanced Science, 2018, doi:10.1002/advs.201700275
[34] Yang C, Li S, Zhang Z, et al. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction[J]. Small, 2020, doi:10.1002/smll.202001847
[35] Nevin K P, Woodard T L, Franks A E, et al. Microbial electrosynthesis:Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. mBio, 2010, 1(2):e00103-e00110
[36] Rabaey K, Rozendal R A. Microbial electrosynthesis-revisiting the electrical route for microbial production[J]. Nature Reviews Microbiology, 2010, 8(10):706-716
[37] Li H, Opgenorth P H, Wernick D G, et al. Integrated electromicrobial conversion of CO2 to higher alcohols[J]. Science, 2012, doi:10.1126/science.1217643
[38] Chen X, Cao Y, Li F, et al. Enzyme-assisted microbial electrosynthesis of poly(3-hydroxybutyrate) via CO2 bioreduction by engineered ralstonia eutropha[J]. ACS Catalysis, 2018, 8(5):4429-4437
[39] Krieg T, Sydow A, Faust S, et al. CO2 to terpenes:Autotrophic and electroautotrophic α-humulene production with cupriavidus necator[J]. Angewandte Chemie, 2018, 130(7):1897-1900
[40] Tremblay P L, Zhang T. Electrifying microbes for the production of chemicals[J]. Frontiers in Microbiology, 2015, doi:10.3389/fmicb.2015.00201
[41] Tremblay P L, Angenent L T, Zhang T. Extracellular electron uptake:Among autotrophs and mediated by surfaces[J]. Trends in Biotechnology, 2017, 35(4):360-371
[42] Lee S Y, Oh Y K, Lee S, et al. Recent developments and key barriers to microbial CO2 electrobiorefinery[J]. Bioresource Technology, 2021, doi:10.1016/j.biortech.2020.124350
[43] Nevin K P, Hensley S A, Franks A E, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology, 2011, 77(9):2882-2886
[44] Walker D J F, Martz E, Holmes D E, et al. The Archaellum of methanospirillum hungatei is electrically conductive[J]. bioRxiv, 2018, doi:10.1101/458356
[45] Cheng S, Xing D, Call D, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43(10):3953-3958
[46] Yu L, Yuan Y, Tang J, et al. Thermophilic Moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2[J]. Bioelectrochemistry, 2017, 117:23-28
[47] Flexer V, Jourdin L. Purposely designed hierarchical porous electrodes for high rate microbial electrosynthesis of acetate from carbon dioxide[J]. Accounts of Chemical Research, 2020, 53(2):311-321
[48] Cheng S, Mao Z, Sun Y, et al. A novel electrochemical oxidation-methanogenesis system for simultaneously degrading antibiotics and reducing CO2 to CH4 with low energy costs[J]. Science of the Total Environment, 2021, doi:10.1016/j.scitotenv.2020.141732
[49] Luo H, Qi J, Zhou M, et al. Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens[J]. Bioresource Technology, 2020, doi:10.1016/j.biortech.2020.123322
[50] Faraghiparapari N, Zengler K. Production of organics from CO2 by microbial electrosynthesis (MES) at high temperature[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(2):375-381
[51] Mohanakrishna G, Abu Reesh I M, Vanbroekhoven K, et al. Microbial electrosynthesis feasibility evaluation at high bicarbonate concentrations with enriched homoacetogenic biocathode[J]. Science of the Total Environment, 2020, doi:10.1016/j.scitotenv.2020.137003
[52] Claassens N J, Sánchez-Andrea I, Sousa D Z, et al. Towards sustainable feedstocks:A guide to electron donors for microbial carbon fixation[J]. Current Opinion in Biotechnology, 2018, 50:195-205
[53] Jourdin L, Freguia S, Flexer V, et al. Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions[J]. Environmental Science & Technology, 2016, 50(4):1982-1989
[54] Geppert F, Liu D, van Eerten-Jansen M, et al. Bioelectrochemical power-to-gas:State of the art and future perspectives[J]. Trends in Biotechnology, 2016, 34(11):879-894
[55] Li J, Li Z, Xiao S, et al. Startup cathode potentials determine electron transfer behaviours of biocathodes catalysing CO2 reduction to CH4 in microbial electrosynthesis[J]. Journal of CO2 Utilization, 2020, 35:169-175
[56] Torella J P, Gagliardi C J, Chen J S, et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system[J]. PNAS, 2015, 112(8):2337-2342
[57] Liu C, Colón B C, Ziesack M, et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290):1210-1213
[58] Rodrigues R M, Guan X, Iñiguez J A, et al. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction[J]. Nature Catalysis, 2019, 2(5):407-414
[59] Abel A J, Clark D S. A comprehensive modeling analysis of formate-mediated microbial electrosynthesis[J]. ChemSusChem, 2021, 14(1):344-355
[60] St ckl M, Harms S, Dinges I, et al. From CO2 to bioplastic-coupling the electrochemical CO2 reduction with a microbial product generation by drop-in electrolysis[J]. ChemSusChem, 2020, 13(16):4086-4093
[61] Tashiro Y, Hirano S, Matson M M, et al. Electrical-biological hybrid system for CO2 reduction[J]. Metabolic Engineering, 2018, 47:211-218
[62] Guan J, Berlinger S A, Li X, et al. Development of reactor configurations for an electrofuels platform utilizing genetically modified iron oxidizing bacteria for the reduction of CO2 to biochemicals[J]. Journal of Biotechnology, 2017, 245:21-27
[63] Khunjar W O, Sahin A, West A C, et al. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell[J]. PLoS One, 2012, doi:10.1371/journal.pone.0044846
[64] Steinbusch K J, Hamelers H V, Schaap J D, et al. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures[J]. Environmental Science & Technology, 2010, 44(1):513-517
[65] Song J, Kim Y, Lim M, et al. Microbes as electrochemical CO2 conversion catalysts[J]. ChemSusChem, 2011, 4(5):587-590
[66] Seelajaroen H, Haberbauer M, Hemmelmair C, et al. Enhanced bio-electrochemical reduction of carbon dioxide by using neutral red as a redox mediator[J]. ChemBioChem, 2019, 20(9):1196-1205
[67] Nishio K, Nakamura R, Lin X, et al. Extracellular electron transfer across bacterial cell membranes via a cytocompatible redox-active polymer[J]. ChemPhysChem, 2013, 14(10):2159-2163
[68] Kaneko M, Ishikawa M, Song J, et al. Cathodic supply of electrons to living microbial cells via cytocompatible redox-active polymers[J]. Electrochemistry Communications, 2017, 75:17-20
[69] Claassens N J, Cotton C A R, Kopljar D, et al. Making quantitative sense of electromicrobial production[J]. Nature Catalysis, 2019, 2(5):437-447
[70] Lovley D R, Nevin K P. Electrobiocommodities:Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity[J]. Current Opinion in Biotechnology, 2013, 24(3):385-390
[71] Haas T, Krause R, Weber R, et al. Technical photosynthesis involving CO2 electrolysis and fermentation[J]. Nature Catalysis, 2018, 1(1):32-39
[72] Karthikeyan R, Singh R, Bose A. Microbial electron uptake in microbial electrosynthesis:A mini-review[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(9/10):1419-1426
[73] Kracke F, Deutzmann J S, Gu W, et al. In situ electrochemical H2 production for efficient and stable power-to-gas electromethanogenesis[J]. Green Chemistry, 2020, 22(18):6194-6203
|